一种基于人工神经网络的光伏系统并网实时最大功率跟踪控制器

Alexis de Medeiros Torres, Antunes, Fernando Soares dos Reis
{"title":"一种基于人工神经网络的光伏系统并网实时最大功率跟踪控制器","authors":"Alexis de Medeiros Torres, Antunes, Fernando Soares dos Reis","doi":"10.1109/IECON.1998.724303","DOIUrl":null,"url":null,"abstract":"This work deals with the application of a neural network-based controller for tracking the point of maximum power of a photovoltaic (PV) system interconnected to the utility grid. The neural network is used to identify, in real time, the voltage for maximum output power of the system. The controller, through the information supplied by the neural network, generates a control signal that will be applied to a DC/DC (boost) converter in such a way to take the voltage of the system to a value which guarantees the operation of the PV system at maximum power. The boost converter duty-cycle is generated by a PI controller based on the information supplied by the neural network. In order to connect the PV system to the electric distribution system a three-phase voltage source inverter (VSI) is used operating with optimized sinusoidal PWM strategy with harmonics elimination at the output voltage up to the 17/sup th/ harmonic. The inverter uses IGBT as power switches, and is microcontroller operated.","PeriodicalId":377136,"journal":{"name":"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"An artificial neural network-based real time maximum power tracking controller for connecting a PV system to the grid\",\"authors\":\"Alexis de Medeiros Torres, Antunes, Fernando Soares dos Reis\",\"doi\":\"10.1109/IECON.1998.724303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work deals with the application of a neural network-based controller for tracking the point of maximum power of a photovoltaic (PV) system interconnected to the utility grid. The neural network is used to identify, in real time, the voltage for maximum output power of the system. The controller, through the information supplied by the neural network, generates a control signal that will be applied to a DC/DC (boost) converter in such a way to take the voltage of the system to a value which guarantees the operation of the PV system at maximum power. The boost converter duty-cycle is generated by a PI controller based on the information supplied by the neural network. In order to connect the PV system to the electric distribution system a three-phase voltage source inverter (VSI) is used operating with optimized sinusoidal PWM strategy with harmonics elimination at the output voltage up to the 17/sup th/ harmonic. The inverter uses IGBT as power switches, and is microcontroller operated.\",\"PeriodicalId\":377136,\"journal\":{\"name\":\"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.1998.724303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1998.724303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

本文研究了一种基于神经网络的控制器,用于跟踪与电网相连的光伏系统的最大功率点。神经网络用于实时识别系统最大输出功率所需的电压。控制器通过神经网络提供的信息,产生控制信号,将控制信号作用于DC/DC(升压)变换器,使系统电压达到保证光伏系统在最大功率下运行的值。升压变换器的占空比由PI控制器根据神经网络提供的信息生成。为了实现光伏系统与配电系统的连接,采用三相电压源逆变器(VSI),采用优化的正弦PWM策略,在输出电压处消除高达17次谐波。逆变器采用IGBT作为电源开关,采用单片机控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An artificial neural network-based real time maximum power tracking controller for connecting a PV system to the grid
This work deals with the application of a neural network-based controller for tracking the point of maximum power of a photovoltaic (PV) system interconnected to the utility grid. The neural network is used to identify, in real time, the voltage for maximum output power of the system. The controller, through the information supplied by the neural network, generates a control signal that will be applied to a DC/DC (boost) converter in such a way to take the voltage of the system to a value which guarantees the operation of the PV system at maximum power. The boost converter duty-cycle is generated by a PI controller based on the information supplied by the neural network. In order to connect the PV system to the electric distribution system a three-phase voltage source inverter (VSI) is used operating with optimized sinusoidal PWM strategy with harmonics elimination at the output voltage up to the 17/sup th/ harmonic. The inverter uses IGBT as power switches, and is microcontroller operated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel zero-voltage soft-switching converter for switched reluctance motor drives A novel two-quadrant zero-current-transition converter for DC motor drives Design support system for Japanese kimono Hierarchical motor diagnosis utilizing structural knowledge and a self-learning neuro-fuzzy scheme Torque control of harmonic drive gears with built-in sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1