粒子灰狼优化算法的激励轨迹优化

Xiaolei Wu, Bin Li, Jin Wu, Yaqiao Zhu
{"title":"粒子灰狼优化算法的激励轨迹优化","authors":"Xiaolei Wu, Bin Li, Jin Wu, Yaqiao Zhu","doi":"10.1109/ICMA54519.2022.9856120","DOIUrl":null,"url":null,"abstract":"Aiming at the excitation trajectory design in the identification of inertial parameters of industrial robots, this paper proposes a step-by-step identification and particle gray wolf optimisation algorithm (PSOGWO) to optimise the design of excitation trajectory parameters. First of all, the robot's minimum inertial parameter observation matrix is derived and established by Newton-Eura recursive method, and the observation matrix condition number criterion is used as the optimisation objective function; secondly, the particle gray wolf optimisation algorithm (PSOGWO) is introduced; finally, the periodic Fourier series that meets multi-constraint conditions is optimised and designed as the incentive trajectory using the particle gray wolf optimisation algorithm (PSOGWO). Experimental results show that the excitation trajectory designed with the proposed optimisation method can fully stimulate the dynamic characteristics of the robot, improve the anti-noise ability of parameter identification, and lay a foundation for accurately obtaining the dynamic parameters of the robot.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of the excitation trajectory of particle gray wolf optimization algorithm\",\"authors\":\"Xiaolei Wu, Bin Li, Jin Wu, Yaqiao Zhu\",\"doi\":\"10.1109/ICMA54519.2022.9856120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the excitation trajectory design in the identification of inertial parameters of industrial robots, this paper proposes a step-by-step identification and particle gray wolf optimisation algorithm (PSOGWO) to optimise the design of excitation trajectory parameters. First of all, the robot's minimum inertial parameter observation matrix is derived and established by Newton-Eura recursive method, and the observation matrix condition number criterion is used as the optimisation objective function; secondly, the particle gray wolf optimisation algorithm (PSOGWO) is introduced; finally, the periodic Fourier series that meets multi-constraint conditions is optimised and designed as the incentive trajectory using the particle gray wolf optimisation algorithm (PSOGWO). Experimental results show that the excitation trajectory designed with the proposed optimisation method can fully stimulate the dynamic characteristics of the robot, improve the anti-noise ability of parameter identification, and lay a foundation for accurately obtaining the dynamic parameters of the robot.\",\"PeriodicalId\":120073,\"journal\":{\"name\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"245 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA54519.2022.9856120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9856120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对工业机器人惯性参数辨识中的激励轨迹设计问题,提出了一种分步辨识与粒子灰狼优化算法(PSOGWO)来优化激励轨迹参数的设计。首先,采用牛顿-欧拉递推法推导并建立了机器人最小惯性参数观测矩阵,并以观测矩阵条件数准则作为优化目标函数;其次,介绍了粒子灰狼优化算法(PSOGWO);最后,利用粒子灰狼优化算法(PSOGWO)对满足多约束条件的周期傅立叶级数进行优化设计,作为激励轨迹。实验结果表明,采用所提优化方法设计的激励轨迹能够充分激发机器人的动态特性,提高了参数辨识的抗噪声能力,为准确获取机器人的动态参数奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of the excitation trajectory of particle gray wolf optimization algorithm
Aiming at the excitation trajectory design in the identification of inertial parameters of industrial robots, this paper proposes a step-by-step identification and particle gray wolf optimisation algorithm (PSOGWO) to optimise the design of excitation trajectory parameters. First of all, the robot's minimum inertial parameter observation matrix is derived and established by Newton-Eura recursive method, and the observation matrix condition number criterion is used as the optimisation objective function; secondly, the particle gray wolf optimisation algorithm (PSOGWO) is introduced; finally, the periodic Fourier series that meets multi-constraint conditions is optimised and designed as the incentive trajectory using the particle gray wolf optimisation algorithm (PSOGWO). Experimental results show that the excitation trajectory designed with the proposed optimisation method can fully stimulate the dynamic characteristics of the robot, improve the anti-noise ability of parameter identification, and lay a foundation for accurately obtaining the dynamic parameters of the robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Fuzzy Indrect Adaptive Robust Control for Upper Extremity Exoskeleton Driven by Pneumatic Artificial Muscle Visual Localization Strategy for Indoor Mobile Robots in the Complex Environment Smart Prosthetic Knee for Above-Knee Amputees Research on the recovery system of the fixed wing swarm based on the robotic vision in the marine environment Lightning Arrester Target Segmentation Algorithm Based on Improved DeepLabv3+ and GrabCut
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1