{"title":"面向qos的小蜂窝网络无线VR资源分配","authors":"Tianyu Lu, Haibo Dai, Baoyun Wang","doi":"10.1109/WCSP.2018.8555683","DOIUrl":null,"url":null,"abstract":"For wireless virtual reality (VR) over small cell networks (SCN), the latency between user’s dynamic head rotation and the synchronous change in head-mounted display (HMD) influences quality of experience (QoE). In this paper, to assess VR user’s QoE, we specify mean opinion score (MOS) as a metric of latency. With the goal of maximizing system-wide MOS, the stochastic game approach is leveraged for investigating resource allocation problem. For problem solution, a distributed multi-agent learning algorithm is proposed, which can converge to a pure-strategy Nash equilibrium (NE). Numerical results demonstrate the excellent performance of our proposed algorithm.","PeriodicalId":423073,"journal":{"name":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"QoE-Orientated Resource Allocation for Wireless VR over Small Cell Networks\",\"authors\":\"Tianyu Lu, Haibo Dai, Baoyun Wang\",\"doi\":\"10.1109/WCSP.2018.8555683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For wireless virtual reality (VR) over small cell networks (SCN), the latency between user’s dynamic head rotation and the synchronous change in head-mounted display (HMD) influences quality of experience (QoE). In this paper, to assess VR user’s QoE, we specify mean opinion score (MOS) as a metric of latency. With the goal of maximizing system-wide MOS, the stochastic game approach is leveraged for investigating resource allocation problem. For problem solution, a distributed multi-agent learning algorithm is proposed, which can converge to a pure-strategy Nash equilibrium (NE). Numerical results demonstrate the excellent performance of our proposed algorithm.\",\"PeriodicalId\":423073,\"journal\":{\"name\":\"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2018.8555683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2018.8555683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
QoE-Orientated Resource Allocation for Wireless VR over Small Cell Networks
For wireless virtual reality (VR) over small cell networks (SCN), the latency between user’s dynamic head rotation and the synchronous change in head-mounted display (HMD) influences quality of experience (QoE). In this paper, to assess VR user’s QoE, we specify mean opinion score (MOS) as a metric of latency. With the goal of maximizing system-wide MOS, the stochastic game approach is leveraged for investigating resource allocation problem. For problem solution, a distributed multi-agent learning algorithm is proposed, which can converge to a pure-strategy Nash equilibrium (NE). Numerical results demonstrate the excellent performance of our proposed algorithm.