无人水面车辆建模与控制:一种综合方法

Yiming Zhong, Caoyang Yu, Junjun Cao, Chunhu Liu, L. Lian
{"title":"无人水面车辆建模与控制:一种综合方法","authors":"Yiming Zhong, Caoyang Yu, Junjun Cao, Chunhu Liu, L. Lian","doi":"10.1109/CACRE58689.2023.10208685","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive approach to augment the control performance of unmanned surface vehicles (USVs), addressing two core issues: dynamics modeling and control of USVs. To bolster the precision of dynamics modeling, the paper introduces a parameter identification algorithm based on the nonlinear multi-innovation least-squares method (NMILS). NMILS helps mitigate the noise influence and enhances the precision of the dynamics modeling. To further reinforce control performance, finite-time sliding mode control (FTSMC) is employed. FTSMC effectively counteracts the influence of identification errors, offering enhanced robustness against uncertainties and disturbances. The proposed techniques are validated on the Cybership I model. Simulation results revealed highly accurate parameter identification, with identified values for key parameters m11, m22, and m33 closely matching the true values. Moreover, motion prediction with these identified parameters yielded minor errors, the largest spread being in eu with a maximum value of 0.047m/s. The effectiveness of the FTSMC control strategy was demonstrated through a path-following simulation. Notably, the maximum errors for xe and ye did not exceed 0.006m and 0.15m respectively, reinforcing the precision of the proposed approach.","PeriodicalId":447007,"journal":{"name":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Control of Unmanned Surface Vehicles: An Integrated Approach\",\"authors\":\"Yiming Zhong, Caoyang Yu, Junjun Cao, Chunhu Liu, L. Lian\",\"doi\":\"10.1109/CACRE58689.2023.10208685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comprehensive approach to augment the control performance of unmanned surface vehicles (USVs), addressing two core issues: dynamics modeling and control of USVs. To bolster the precision of dynamics modeling, the paper introduces a parameter identification algorithm based on the nonlinear multi-innovation least-squares method (NMILS). NMILS helps mitigate the noise influence and enhances the precision of the dynamics modeling. To further reinforce control performance, finite-time sliding mode control (FTSMC) is employed. FTSMC effectively counteracts the influence of identification errors, offering enhanced robustness against uncertainties and disturbances. The proposed techniques are validated on the Cybership I model. Simulation results revealed highly accurate parameter identification, with identified values for key parameters m11, m22, and m33 closely matching the true values. Moreover, motion prediction with these identified parameters yielded minor errors, the largest spread being in eu with a maximum value of 0.047m/s. The effectiveness of the FTSMC control strategy was demonstrated through a path-following simulation. Notably, the maximum errors for xe and ye did not exceed 0.006m and 0.15m respectively, reinforcing the precision of the proposed approach.\",\"PeriodicalId\":447007,\"journal\":{\"name\":\"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CACRE58689.2023.10208685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACRE58689.2023.10208685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种提高无人水面飞行器控制性能的综合方法,解决了无人水面飞行器动力学建模和控制两个核心问题。为了提高动力学建模的精度,提出了一种基于非线性多创新最小二乘法的参数辨识算法。NMILS有助于减轻噪声的影响,提高动力学建模的精度。为了进一步提高控制性能,采用了有限时间滑模控制(FTSMC)。FTSMC有效地抵消了辨识误差的影响,增强了对不确定性和干扰的鲁棒性。在Cybership I模型上验证了所提出的技术。仿真结果显示了高度精确的参数识别,关键参数m11、m22和m33的识别值与真实值非常接近。此外,利用这些识别的参数进行运动预测误差较小,最大的误差为0.047m/s。通过路径跟踪仿真验证了FTSMC控制策略的有效性。值得注意的是,xe和ye的最大误差分别不超过0.006m和0.15m,增强了所提方法的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and Control of Unmanned Surface Vehicles: An Integrated Approach
This paper presents a comprehensive approach to augment the control performance of unmanned surface vehicles (USVs), addressing two core issues: dynamics modeling and control of USVs. To bolster the precision of dynamics modeling, the paper introduces a parameter identification algorithm based on the nonlinear multi-innovation least-squares method (NMILS). NMILS helps mitigate the noise influence and enhances the precision of the dynamics modeling. To further reinforce control performance, finite-time sliding mode control (FTSMC) is employed. FTSMC effectively counteracts the influence of identification errors, offering enhanced robustness against uncertainties and disturbances. The proposed techniques are validated on the Cybership I model. Simulation results revealed highly accurate parameter identification, with identified values for key parameters m11, m22, and m33 closely matching the true values. Moreover, motion prediction with these identified parameters yielded minor errors, the largest spread being in eu with a maximum value of 0.047m/s. The effectiveness of the FTSMC control strategy was demonstrated through a path-following simulation. Notably, the maximum errors for xe and ye did not exceed 0.006m and 0.15m respectively, reinforcing the precision of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continual Contrastive Anomaly Detection under Natural Data Distribution Shifts Safety-Critical Path Planning of Autonomous Surface Vehicles Based on Rapidly-Exploring Random Tree Algorithm and High Order Control Barrier Functions An Integrated Calibration Scheme for Attitude Benchmark of Micro-nano Satellites and Its Experiments Based on In-Orbit Data Developing an Untethered Soft Robot for Finger Rehabilitation 3D Scanning Vision System Design and Implementation in Large Shipbuilding Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1