{"title":"pde的形式算法消去","authors":"D. Robertz","doi":"10.1145/2930889.2930941","DOIUrl":null,"url":null,"abstract":"Similarly to the correspondence between radical ideals of a polynomial ring and varieties in algebraic geometry, a correspondence between radical differential ideals and their analytic solution sets has been established in differential algebra. This tutorial discusses aspects of this correspondence involving symbolic computation. In particular, an introduction to the Thomas decomposition method is given. It splits a system of polynomially nonlinear partial differential equations into finitely many so-called simple differential systems whose solution sets form a partition of the original solution set. The power series solutions of each simple system can be determined in a straightforward way. Conversely, certain sets of analytic functions admit an implicit description in terms of partial differential equations and inequations. Strategies for solving related differential elimination problems and applications to symbolic solving of differential equations are presented. A Maple implementation of the Thomas decomposition method is freely available.","PeriodicalId":169557,"journal":{"name":"Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Formal Algorithmic Elimination for PDEs\",\"authors\":\"D. Robertz\",\"doi\":\"10.1145/2930889.2930941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Similarly to the correspondence between radical ideals of a polynomial ring and varieties in algebraic geometry, a correspondence between radical differential ideals and their analytic solution sets has been established in differential algebra. This tutorial discusses aspects of this correspondence involving symbolic computation. In particular, an introduction to the Thomas decomposition method is given. It splits a system of polynomially nonlinear partial differential equations into finitely many so-called simple differential systems whose solution sets form a partition of the original solution set. The power series solutions of each simple system can be determined in a straightforward way. Conversely, certain sets of analytic functions admit an implicit description in terms of partial differential equations and inequations. Strategies for solving related differential elimination problems and applications to symbolic solving of differential equations are presented. A Maple implementation of the Thomas decomposition method is freely available.\",\"PeriodicalId\":169557,\"journal\":{\"name\":\"Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2930889.2930941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2930889.2930941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

类似于代数几何中多项式环的根理想与变量之间的对应关系,微分代数中已经建立了根微分理想与其解析解集之间的对应关系。本教程讨论了涉及符号计算的这种对应关系的各个方面。特别介绍了托马斯分解法。它将一个多项式非线性偏微分方程组分解成有限多个所谓的简单微分方程组,这些简单微分方程组的解集构成了原始解集的一个分拆。每个简单系统的幂级数解可以用一种直接的方法确定。相反,某些解析函数的集合允许用偏微分方程和不等式来隐式描述。给出了解决相关微分消去问题的策略以及在微分方程符号求解中的应用。Thomas分解方法的Maple实现是免费的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formal Algorithmic Elimination for PDEs
Similarly to the correspondence between radical ideals of a polynomial ring and varieties in algebraic geometry, a correspondence between radical differential ideals and their analytic solution sets has been established in differential algebra. This tutorial discusses aspects of this correspondence involving symbolic computation. In particular, an introduction to the Thomas decomposition method is given. It splits a system of polynomially nonlinear partial differential equations into finitely many so-called simple differential systems whose solution sets form a partition of the original solution set. The power series solutions of each simple system can be determined in a straightforward way. Conversely, certain sets of analytic functions admit an implicit description in terms of partial differential equations and inequations. Strategies for solving related differential elimination problems and applications to symbolic solving of differential equations are presented. A Maple implementation of the Thomas decomposition method is freely available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing Limits of Real Multivariate Rational Functions Faster LLL-type Reduction of Lattice Bases Positive Root Isolation for Poly-Powers Computing the Lie Algebra of the Differential Galois Group of a Linear Differential System Fast Polynomial Multiplication over F260
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1