曲霉、枝孢菌和木霉的图像分割

Bayu Maulana, Mukti Wibowo, Gilang Putra, Josua Geovani Pinem, Umi Chasanah, P. A. Pramesti, Muhamad Supriyadi, Dyah Hidayati, Kristiningrum Kristin, Muhammad Reza Alfin, Aulia Haritsuddin Karisma Muhammad Subekti, Dewi Budiarti, J. Muliadi, A. Nugroho
{"title":"曲霉、枝孢菌和木霉的图像分割","authors":"Bayu Maulana, Mukti Wibowo, Gilang Putra, Josua Geovani Pinem, Umi Chasanah, P. A. Pramesti, Muhamad Supriyadi, Dyah Hidayati, Kristiningrum Kristin, Muhammad Reza Alfin, Aulia Haritsuddin Karisma Muhammad Subekti, Dewi Budiarti, J. Muliadi, A. Nugroho","doi":"10.1145/3575882.3575904","DOIUrl":null,"url":null,"abstract":"In order to support research in drug development, there is a need to classify fungi based on their genus. The first step in this research is to perform image segmentation on various fungi images. This study compares three segmentation methods with image datasets of microorganisms of fungi species from three genera: Aspergillus, Trichoderma, and Cladosporium. Otsu thresholding, adaptive thresholding, and k-means clustering are the three segmentation methods used. The comparison is evaluated using Dice and Jaccard similarity. The evaluation result shows that the adaptive thresholding method obtained the highest value with an average Jaccard score of 0.6102 and a Dice score of 0.7321. The Otsu thresholding method obtained an average Jaccard and Dice score of 0.3738 and 0.4625. Meanwhile, the k-means clustering method got an average Jaccard and Dice score of 0.2524 and 0.3272.","PeriodicalId":367340,"journal":{"name":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Segmentation for Aspergillus, Cladosporium, and Trichoderma Fungus\",\"authors\":\"Bayu Maulana, Mukti Wibowo, Gilang Putra, Josua Geovani Pinem, Umi Chasanah, P. A. Pramesti, Muhamad Supriyadi, Dyah Hidayati, Kristiningrum Kristin, Muhammad Reza Alfin, Aulia Haritsuddin Karisma Muhammad Subekti, Dewi Budiarti, J. Muliadi, A. Nugroho\",\"doi\":\"10.1145/3575882.3575904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to support research in drug development, there is a need to classify fungi based on their genus. The first step in this research is to perform image segmentation on various fungi images. This study compares three segmentation methods with image datasets of microorganisms of fungi species from three genera: Aspergillus, Trichoderma, and Cladosporium. Otsu thresholding, adaptive thresholding, and k-means clustering are the three segmentation methods used. The comparison is evaluated using Dice and Jaccard similarity. The evaluation result shows that the adaptive thresholding method obtained the highest value with an average Jaccard score of 0.6102 and a Dice score of 0.7321. The Otsu thresholding method obtained an average Jaccard and Dice score of 0.3738 and 0.4625. Meanwhile, the k-means clustering method got an average Jaccard and Dice score of 0.2524 and 0.3272.\",\"PeriodicalId\":367340,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3575882.3575904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575882.3575904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了支持药物开发的研究,有必要根据属对真菌进行分类。本研究的第一步是对各种真菌图像进行图像分割。本研究对曲霉、木霉和枝孢菌三属真菌的微生物图像数据集进行了三种分割方法的比较。Otsu阈值分割、自适应阈值分割和k-means聚类是常用的三种分割方法。比较使用骰子和Jaccard相似度进行评估。评价结果表明,自适应阈值法获得的评分最高,Jaccard平均分为0.6102,Dice平均分为0.7321。Otsu阈值法得到的Jaccard和Dice平均得分分别为0.3738和0.4625。同时,k-means聚类方法的Jaccard和Dice平均得分分别为0.2524和0.3272。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Segmentation for Aspergillus, Cladosporium, and Trichoderma Fungus
In order to support research in drug development, there is a need to classify fungi based on their genus. The first step in this research is to perform image segmentation on various fungi images. This study compares three segmentation methods with image datasets of microorganisms of fungi species from three genera: Aspergillus, Trichoderma, and Cladosporium. Otsu thresholding, adaptive thresholding, and k-means clustering are the three segmentation methods used. The comparison is evaluated using Dice and Jaccard similarity. The evaluation result shows that the adaptive thresholding method obtained the highest value with an average Jaccard score of 0.6102 and a Dice score of 0.7321. The Otsu thresholding method obtained an average Jaccard and Dice score of 0.3738 and 0.4625. Meanwhile, the k-means clustering method got an average Jaccard and Dice score of 0.2524 and 0.3272.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling the climate factors affecting forest fire in Sumatra using Random Forest and Artificial Neural Network Parallel Programming in Finite Difference Method to Solve Turing's Model of Spot Pattern Identification of Hoya Plant using Convolutional Neural Network (CNN) and Transfer Learning Android-based Forest Fire Danger Rating Information System for Early Prevention of Forest / Land fires Leak Detection using Non-Intrusive Ultrasonic Water Flowmeter Sensor in Water Distribution Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1