基于机器学习算法的APT1数据集字符串和PE头特征静态恶意软件分析

Neil Balram, G. Hsieh, Christian McFall
{"title":"基于机器学习算法的APT1数据集字符串和PE头特征静态恶意软件分析","authors":"Neil Balram, G. Hsieh, Christian McFall","doi":"10.1109/CSCI49370.2019.00022","DOIUrl":null,"url":null,"abstract":"Static malware analysis is used to analyze executable files without executing the code to determine whether a file is malicious or not. Data analytic and machine learning techniques have been used increasingly to help process the large number of malware files circulating in the wild and detect new attacks. In this paper, we present the design and implementation of six different machine learning classifiers, and two distinct categories of features statically extracted from the executables: strings and Portable Executable header information. A total of twelve malware detectors were implemented for each of the six classifiers to operate with each of the two feature categories separately. These classifiers and feature extraction algorithms were implemented in Python using the scikit-learn machine learning library. The performances in detection accuracy and required processing time of the twelve malware detectors were compared and analyzed.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Static Malware Analysis Using Machine Learning Algorithms on APT1 Dataset with String and PE Header Features\",\"authors\":\"Neil Balram, G. Hsieh, Christian McFall\",\"doi\":\"10.1109/CSCI49370.2019.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static malware analysis is used to analyze executable files without executing the code to determine whether a file is malicious or not. Data analytic and machine learning techniques have been used increasingly to help process the large number of malware files circulating in the wild and detect new attacks. In this paper, we present the design and implementation of six different machine learning classifiers, and two distinct categories of features statically extracted from the executables: strings and Portable Executable header information. A total of twelve malware detectors were implemented for each of the six classifiers to operate with each of the two feature categories separately. These classifiers and feature extraction algorithms were implemented in Python using the scikit-learn machine learning library. The performances in detection accuracy and required processing time of the twelve malware detectors were compared and analyzed.\",\"PeriodicalId\":103662,\"journal\":{\"name\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI49370.2019.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

静态恶意软件分析是在不执行代码的情况下对可执行文件进行分析,以确定文件是否为恶意文件。数据分析和机器学习技术已被越来越多地用于帮助处理大量恶意软件文件,并检测新的攻击。在本文中,我们介绍了六种不同的机器学习分类器的设计和实现,以及从可执行文件中静态提取的两种不同类别的特征:字符串和可移植可执行头信息。总共为六个分类器中的每一个实现了十二个恶意软件检测器,分别与两个特征类别中的每一个运行。这些分类器和特征提取算法使用scikit-learn机器学习库在Python中实现。比较分析了12种恶意软件检测器在检测精度和所需处理时间方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Static Malware Analysis Using Machine Learning Algorithms on APT1 Dataset with String and PE Header Features
Static malware analysis is used to analyze executable files without executing the code to determine whether a file is malicious or not. Data analytic and machine learning techniques have been used increasingly to help process the large number of malware files circulating in the wild and detect new attacks. In this paper, we present the design and implementation of six different machine learning classifiers, and two distinct categories of features statically extracted from the executables: strings and Portable Executable header information. A total of twelve malware detectors were implemented for each of the six classifiers to operate with each of the two feature categories separately. These classifiers and feature extraction algorithms were implemented in Python using the scikit-learn machine learning library. The performances in detection accuracy and required processing time of the twelve malware detectors were compared and analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Long Short Term Memory Networks Extending a Soft-Core RISC-V Processor to Accelerate CNN Inference Uncovering Los Angeles Tourists' Patterns Using Geospatial Analysis and Supervised Machine Learning with Random Forest Predictors A Framework for Leveraging Business Intelligence to Manage Transactional Data Flows between Private Healthcare Providers and Medical Aid Administrators Feasibility Study of a Consumer Multi-Sensory Wristband to Monitor Sleep Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1