Z. Shellenbarger, M. Mauk, L. C. Dinetta, G. Charache
{"title":"InGaAsSb/GaSb TPV器件的最新进展","authors":"Z. Shellenbarger, M. Mauk, L. C. Dinetta, G. Charache","doi":"10.1109/PVSC.1996.563951","DOIUrl":null,"url":null,"abstract":"AstroPower is developing InGaAsSb thermophotovoltaic (TPV) devices. This photovoltaic cell is a two-layer epitaxial InGaAsSb structure formed by liquid-phase epitaxy on a GaSb substrate. The (direct) bandgap of the In/sub 1-x/Ga/sub x/As/sub 1-y/Sb/sub y/ alloy is 0.50 to 0.55 eV, depending on its exact alloy composition (x,y), and is closely lattice-matched to the GaSb substrate. Internal quantum efficiencies as high as 95% have been measured at a wavelength of 2 microns. At a wavelength of 1 micron, internal quantum efficiencies of 55% have been observed. At a current density of 1.6 A/cm/sup 2/, an open-circuit voltage of 0.250 V and a fill factor of 60% have been measured. Our results to date show that the GaSb-based quaternary compounds provide a viable and high performance energy conversion solution for thermophotovoltaic systems operating with 1000 to 1500/spl deg/C source temperatures.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Recent progress in InGaAsSb/GaSb TPV devices\",\"authors\":\"Z. Shellenbarger, M. Mauk, L. C. Dinetta, G. Charache\",\"doi\":\"10.1109/PVSC.1996.563951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AstroPower is developing InGaAsSb thermophotovoltaic (TPV) devices. This photovoltaic cell is a two-layer epitaxial InGaAsSb structure formed by liquid-phase epitaxy on a GaSb substrate. The (direct) bandgap of the In/sub 1-x/Ga/sub x/As/sub 1-y/Sb/sub y/ alloy is 0.50 to 0.55 eV, depending on its exact alloy composition (x,y), and is closely lattice-matched to the GaSb substrate. Internal quantum efficiencies as high as 95% have been measured at a wavelength of 2 microns. At a wavelength of 1 micron, internal quantum efficiencies of 55% have been observed. At a current density of 1.6 A/cm/sup 2/, an open-circuit voltage of 0.250 V and a fill factor of 60% have been measured. Our results to date show that the GaSb-based quaternary compounds provide a viable and high performance energy conversion solution for thermophotovoltaic systems operating with 1000 to 1500/spl deg/C source temperatures.\",\"PeriodicalId\":410394,\"journal\":{\"name\":\"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.1996.563951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1996.563951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AstroPower is developing InGaAsSb thermophotovoltaic (TPV) devices. This photovoltaic cell is a two-layer epitaxial InGaAsSb structure formed by liquid-phase epitaxy on a GaSb substrate. The (direct) bandgap of the In/sub 1-x/Ga/sub x/As/sub 1-y/Sb/sub y/ alloy is 0.50 to 0.55 eV, depending on its exact alloy composition (x,y), and is closely lattice-matched to the GaSb substrate. Internal quantum efficiencies as high as 95% have been measured at a wavelength of 2 microns. At a wavelength of 1 micron, internal quantum efficiencies of 55% have been observed. At a current density of 1.6 A/cm/sup 2/, an open-circuit voltage of 0.250 V and a fill factor of 60% have been measured. Our results to date show that the GaSb-based quaternary compounds provide a viable and high performance energy conversion solution for thermophotovoltaic systems operating with 1000 to 1500/spl deg/C source temperatures.