正则型对策中量子响应平衡的贝叶斯推理

J. Bland
{"title":"正则型对策中量子响应平衡的贝叶斯推理","authors":"J. Bland","doi":"10.2139/ssrn.3748586","DOIUrl":null,"url":null,"abstract":"This paper develops a framework for estimating Quantal Response Equilibrium models from experimental data using Bayesian techniques. Bayesian techniques offer some advantages over the more commonly-used maximum likelihood approach: (i) the accuracy of the posterior simulation is limited by (increasingly plentiful) computational resources, both in hardware and software, rather than the validity of an asymptotic assumption that may not be reasonable with typical experimental sample sizes; (ii) Bayesian hierarchical models are a useful way to organize heterogeneity in one's data; and (iii) Bayesian inference allows us to test whether Quantal Response Equilibrium better organizes data than does (say) Nash equilibrium or purely random behavior, without rigging the test in favor of one of these by calling it the null hypothesis.<br><br>As Quantal Response Equilibrium is a non-linear model, I also discuss some issues with choosing appropriate priors. Namely, choosing a very flat prior for the choice precision parameter implies a prior on choice probabilities with too much mass near Nash equilibrium and/or random choice. I propose a prior calibration process which seeks to avoid this problem by targeting the implied prior distribution of equilibrium choice probabilities.","PeriodicalId":373527,"journal":{"name":"PSN: Game Theory (Topic)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Inference for Quantal Response Equilibrium in Normal-Form Games\",\"authors\":\"J. Bland\",\"doi\":\"10.2139/ssrn.3748586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a framework for estimating Quantal Response Equilibrium models from experimental data using Bayesian techniques. Bayesian techniques offer some advantages over the more commonly-used maximum likelihood approach: (i) the accuracy of the posterior simulation is limited by (increasingly plentiful) computational resources, both in hardware and software, rather than the validity of an asymptotic assumption that may not be reasonable with typical experimental sample sizes; (ii) Bayesian hierarchical models are a useful way to organize heterogeneity in one's data; and (iii) Bayesian inference allows us to test whether Quantal Response Equilibrium better organizes data than does (say) Nash equilibrium or purely random behavior, without rigging the test in favor of one of these by calling it the null hypothesis.<br><br>As Quantal Response Equilibrium is a non-linear model, I also discuss some issues with choosing appropriate priors. Namely, choosing a very flat prior for the choice precision parameter implies a prior on choice probabilities with too much mass near Nash equilibrium and/or random choice. I propose a prior calibration process which seeks to avoid this problem by targeting the implied prior distribution of equilibrium choice probabilities.\",\"PeriodicalId\":373527,\"journal\":{\"name\":\"PSN: Game Theory (Topic)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Game Theory (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3748586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Game Theory (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3748586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文开发了一个使用贝叶斯技术从实验数据估计量子响应平衡模型的框架。与更常用的最大似然方法相比,贝叶斯技术提供了一些优势:(i)后验模拟的准确性受到(日益丰富的)硬件和软件计算资源的限制,而不是受典型实验样本量可能不合理的渐近假设的有效性的限制;(ii)贝叶斯层次模型是组织数据异质性的有效方法;(iii)贝叶斯推理允许我们测试量子反应均衡是否比纳什均衡或纯粹的随机行为更好地组织数据,而不会通过将其称为零假设来操纵测试。由于量子反应平衡是一个非线性模型,我也讨论了选择合适的先验的一些问题。也就是说,为选择精度参数选择一个非常平坦的先验意味着在纳什均衡和/或随机选择附近有太多质量的选择概率的先验。我提出了一个先验校准过程,旨在通过针对均衡选择概率的隐含先验分布来避免这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Inference for Quantal Response Equilibrium in Normal-Form Games
This paper develops a framework for estimating Quantal Response Equilibrium models from experimental data using Bayesian techniques. Bayesian techniques offer some advantages over the more commonly-used maximum likelihood approach: (i) the accuracy of the posterior simulation is limited by (increasingly plentiful) computational resources, both in hardware and software, rather than the validity of an asymptotic assumption that may not be reasonable with typical experimental sample sizes; (ii) Bayesian hierarchical models are a useful way to organize heterogeneity in one's data; and (iii) Bayesian inference allows us to test whether Quantal Response Equilibrium better organizes data than does (say) Nash equilibrium or purely random behavior, without rigging the test in favor of one of these by calling it the null hypothesis.

As Quantal Response Equilibrium is a non-linear model, I also discuss some issues with choosing appropriate priors. Namely, choosing a very flat prior for the choice precision parameter implies a prior on choice probabilities with too much mass near Nash equilibrium and/or random choice. I propose a prior calibration process which seeks to avoid this problem by targeting the implied prior distribution of equilibrium choice probabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reputation for Toughness Reinforcement Learning in Contests Under Suspicion: Trust Dynamics with Secret Undermining Development of Methodological Foundations for the Development of Energy in Industry 4.0 in Part of Game Theory and Blockchain A Class of N-Player Colonel Blotto Games with Multidimensional Private Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1