并行神经网络实现的硬件方面

I. Kouretas, Vassilis Paliouras
{"title":"并行神经网络实现的硬件方面","authors":"I. Kouretas, Vassilis Paliouras","doi":"10.1109/MOCAST52088.2021.9493365","DOIUrl":null,"url":null,"abstract":"In this paper a parallel neural network architecture is proposed targeting efficient hardware implementation on low-resource devices. Following the introduction of the proposed technique, the novel concept is applied on two basic function approximation examples namely cos(x) and sin(x). Quantitative results are offered and discussed in terms of accuracy and hardware complexity. It is shown that the proposed technique achieves promising results when considering low-power and high-performance hardware implementations targeted to edge devices.","PeriodicalId":146990,"journal":{"name":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware Aspects of Parallel Neural Network Implementation\",\"authors\":\"I. Kouretas, Vassilis Paliouras\",\"doi\":\"10.1109/MOCAST52088.2021.9493365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a parallel neural network architecture is proposed targeting efficient hardware implementation on low-resource devices. Following the introduction of the proposed technique, the novel concept is applied on two basic function approximation examples namely cos(x) and sin(x). Quantitative results are offered and discussed in terms of accuracy and hardware complexity. It is shown that the proposed technique achieves promising results when considering low-power and high-performance hardware implementations targeted to edge devices.\",\"PeriodicalId\":146990,\"journal\":{\"name\":\"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MOCAST52088.2021.9493365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOCAST52088.2021.9493365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种并行神经网络结构,其目标是在低资源设备上实现高效的硬件实现。在介绍了所提出的技术之后,将新概念应用于两个基本函数逼近示例,即cos(x)和sin(x)。给出了定量结果,并从精度和硬件复杂性方面进行了讨论。在考虑针对边缘设备的低功耗和高性能硬件实现时,所提出的技术取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hardware Aspects of Parallel Neural Network Implementation
In this paper a parallel neural network architecture is proposed targeting efficient hardware implementation on low-resource devices. Following the introduction of the proposed technique, the novel concept is applied on two basic function approximation examples namely cos(x) and sin(x). Quantitative results are offered and discussed in terms of accuracy and hardware complexity. It is shown that the proposed technique achieves promising results when considering low-power and high-performance hardware implementations targeted to edge devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fish Morphological Feature Recognition Based on Deep Learning Techniques Design Steps towards a MCU-based Instrumentation System for Memristor-based Crossbar Arrays Advanced Teaching in Electromagnetics at the ELEDIA Research Center ATLAS toward the High Luminosity era: challenges on electronic systems Unsupervised Machine Learning in 6G Networks -State-of-the-art and Future Trends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1