Salma Ben Dhaou, Kuang Zhou, M. Kharoune, Arnaud Martin, B. B. Yaghlane
{"title":"证据属性在社交网络中的优势","authors":"Salma Ben Dhaou, Kuang Zhou, M. Kharoune, Arnaud Martin, B. B. Yaghlane","doi":"10.23919/ICIF.2017.8009758","DOIUrl":null,"url":null,"abstract":"Currently, there are many approaches designed for the task of detecting communities in social networks. Among them, some methods only consider the topological graph structure, while others can take use of both the graph structure and the node attributes. In real-world networks, there are many uncertain and noisy attributes in the graph. In this paper, we will present how we can detect communities for graphs with uncertain attributes in the first step. The numerical, probabilistic as well as evidential attributes are generated according to the graph structure. In the second step, some noise will be added to the attributes. We perform experiments on graphs with different types of attributes and compare the detection results in terms of the Normalized Mutual Information (NMI) values. The experimental results show that the clustering with evidential attributes give better results comparing to those with probabilistic and numerical attributes. This illustrates the advantages of evidential attributes.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The advantage of evidential attributes in social networks\",\"authors\":\"Salma Ben Dhaou, Kuang Zhou, M. Kharoune, Arnaud Martin, B. B. Yaghlane\",\"doi\":\"10.23919/ICIF.2017.8009758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, there are many approaches designed for the task of detecting communities in social networks. Among them, some methods only consider the topological graph structure, while others can take use of both the graph structure and the node attributes. In real-world networks, there are many uncertain and noisy attributes in the graph. In this paper, we will present how we can detect communities for graphs with uncertain attributes in the first step. The numerical, probabilistic as well as evidential attributes are generated according to the graph structure. In the second step, some noise will be added to the attributes. We perform experiments on graphs with different types of attributes and compare the detection results in terms of the Normalized Mutual Information (NMI) values. The experimental results show that the clustering with evidential attributes give better results comparing to those with probabilistic and numerical attributes. This illustrates the advantages of evidential attributes.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The advantage of evidential attributes in social networks
Currently, there are many approaches designed for the task of detecting communities in social networks. Among them, some methods only consider the topological graph structure, while others can take use of both the graph structure and the node attributes. In real-world networks, there are many uncertain and noisy attributes in the graph. In this paper, we will present how we can detect communities for graphs with uncertain attributes in the first step. The numerical, probabilistic as well as evidential attributes are generated according to the graph structure. In the second step, some noise will be added to the attributes. We perform experiments on graphs with different types of attributes and compare the detection results in terms of the Normalized Mutual Information (NMI) values. The experimental results show that the clustering with evidential attributes give better results comparing to those with probabilistic and numerical attributes. This illustrates the advantages of evidential attributes.