随机模型预测控制四旋翼直升机轨迹跟踪

Yanhua Yang, Y. Chen, Chaoquan Tang, Li Chai
{"title":"随机模型预测控制四旋翼直升机轨迹跟踪","authors":"Yanhua Yang, Y. Chen, Chaoquan Tang, Li Chai","doi":"10.1109/ANZCC.2017.8298505","DOIUrl":null,"url":null,"abstract":"A stochastic model predictive control (SMPC) method is proposed for trajectory tracking of quadrotor helicopters with stochastic disturbances. The stochastic disturbances are assumed to be Gaussian white noises. The existing robust control methods generally guarantee that the tracking performances under the worst-case disturbances satisfying given conditions. However, the worst-case disturbances may have a vanishingly small probability of occurrence in practice, so these methods show great conservative. In this paper, the tracking errors caused by the disturbances are limited in the acceptable range with the given probability. The hierarchical control structure is used. In the outer loop, the position loop, SMPC controllers are designed for position tracking. In the inner loop, the attitude loop, the nonlinear dynamics are linearized by the feedback linearization strategy, and an SMPC controller is designed for attitude tracking. Finally, simulation results verify the effectiveness of the proposed method.","PeriodicalId":429208,"journal":{"name":"2017 Australian and New Zealand Control Conference (ANZCC)","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Quadrotor helicopters trajectory tracking with stochastic model predictive control\",\"authors\":\"Yanhua Yang, Y. Chen, Chaoquan Tang, Li Chai\",\"doi\":\"10.1109/ANZCC.2017.8298505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A stochastic model predictive control (SMPC) method is proposed for trajectory tracking of quadrotor helicopters with stochastic disturbances. The stochastic disturbances are assumed to be Gaussian white noises. The existing robust control methods generally guarantee that the tracking performances under the worst-case disturbances satisfying given conditions. However, the worst-case disturbances may have a vanishingly small probability of occurrence in practice, so these methods show great conservative. In this paper, the tracking errors caused by the disturbances are limited in the acceptable range with the given probability. The hierarchical control structure is used. In the outer loop, the position loop, SMPC controllers are designed for position tracking. In the inner loop, the attitude loop, the nonlinear dynamics are linearized by the feedback linearization strategy, and an SMPC controller is designed for attitude tracking. Finally, simulation results verify the effectiveness of the proposed method.\",\"PeriodicalId\":429208,\"journal\":{\"name\":\"2017 Australian and New Zealand Control Conference (ANZCC)\",\"volume\":\"233 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Australian and New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZCC.2017.8298505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Australian and New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC.2017.8298505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对具有随机扰动的四旋翼直升机,提出了一种随机模型预测控制(SMPC)方法。随机扰动假定为高斯白噪声。现有的鲁棒控制方法一般都能保证在最坏干扰下的跟踪性能满足给定条件。但在实际应用中,最坏情况下的扰动发生的概率可能非常小,因此这些方法具有很大的保守性。在本文中,干扰引起的跟踪误差在给定的概率下被限制在可接受范围内。采用分层控制结构。外环为位置环,采用SMPC控制器进行位置跟踪。在内环姿态环中,采用反馈线性化策略对非线性动力学进行线性化,并设计了SMPC控制器进行姿态跟踪。最后,仿真结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quadrotor helicopters trajectory tracking with stochastic model predictive control
A stochastic model predictive control (SMPC) method is proposed for trajectory tracking of quadrotor helicopters with stochastic disturbances. The stochastic disturbances are assumed to be Gaussian white noises. The existing robust control methods generally guarantee that the tracking performances under the worst-case disturbances satisfying given conditions. However, the worst-case disturbances may have a vanishingly small probability of occurrence in practice, so these methods show great conservative. In this paper, the tracking errors caused by the disturbances are limited in the acceptable range with the given probability. The hierarchical control structure is used. In the outer loop, the position loop, SMPC controllers are designed for position tracking. In the inner loop, the attitude loop, the nonlinear dynamics are linearized by the feedback linearization strategy, and an SMPC controller is designed for attitude tracking. Finally, simulation results verify the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite-time boundedness of uncertain Markovian jump systems: A sliding mode approach Effects of actuator dynamics on disturbance rejection for small multi-rotor UAS Coexistence for industrial wireless communication systems in the context of industrie 4.0 Quadrotor helicopters trajectory tracking with stochastic model predictive control Functional observer design for linear discrete-time stochastic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1