基于CART决策树的心跳分类算法研究

Tiantian Xie, Runchuan Li, Xingjin Zhang, Bing Zhou, Zongmin Wang
{"title":"基于CART决策树的心跳分类算法研究","authors":"Tiantian Xie, Runchuan Li, Xingjin Zhang, Bing Zhou, Zongmin Wang","doi":"10.1109/ISNE.2019.8896650","DOIUrl":null,"url":null,"abstract":"Premature ventricular contraction (PVC) is a widespread condition of arrhythmia that can be life-threatening at any time. Fast and accurate use of computers to diagnose PVC is critical for both doctors and patients. In this paper, we propose a new method for PVC detection based on abnormal eigenvalues and decision tree. We choose composite areas, amplitudes and intervals as feature parameters to identify heartbeat types. The method was tested in the published MITBIH arrhythmia database with accuracy, sensitivity and specificity of 99.6%, 97.3% and 99.5%, respectively. The effectiveness of the proposed method is proved by comparison with other methods.","PeriodicalId":405565,"journal":{"name":"2019 8th International Symposium on Next Generation Electronics (ISNE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Research on Heartbeat Classification Algorithm Based on CART Decision Tree\",\"authors\":\"Tiantian Xie, Runchuan Li, Xingjin Zhang, Bing Zhou, Zongmin Wang\",\"doi\":\"10.1109/ISNE.2019.8896650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Premature ventricular contraction (PVC) is a widespread condition of arrhythmia that can be life-threatening at any time. Fast and accurate use of computers to diagnose PVC is critical for both doctors and patients. In this paper, we propose a new method for PVC detection based on abnormal eigenvalues and decision tree. We choose composite areas, amplitudes and intervals as feature parameters to identify heartbeat types. The method was tested in the published MITBIH arrhythmia database with accuracy, sensitivity and specificity of 99.6%, 97.3% and 99.5%, respectively. The effectiveness of the proposed method is proved by comparison with other methods.\",\"PeriodicalId\":405565,\"journal\":{\"name\":\"2019 8th International Symposium on Next Generation Electronics (ISNE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Symposium on Next Generation Electronics (ISNE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISNE.2019.8896650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Symposium on Next Generation Electronics (ISNE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNE.2019.8896650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

室性早搏(PVC)是一种广泛存在的心律失常,随时可能危及生命。快速准确地使用计算机诊断PVC对医生和患者都至关重要。本文提出了一种基于异常特征值和决策树的PVC检测新方法。我们选择复合区域、振幅和间隔作为特征参数来识别心跳类型。在已发表的MITBIH心律失常数据库中对该方法进行了测试,其准确性、敏感性和特异性分别为99.6%、97.3%和99.5%。通过与其他方法的比较,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Heartbeat Classification Algorithm Based on CART Decision Tree
Premature ventricular contraction (PVC) is a widespread condition of arrhythmia that can be life-threatening at any time. Fast and accurate use of computers to diagnose PVC is critical for both doctors and patients. In this paper, we propose a new method for PVC detection based on abnormal eigenvalues and decision tree. We choose composite areas, amplitudes and intervals as feature parameters to identify heartbeat types. The method was tested in the published MITBIH arrhythmia database with accuracy, sensitivity and specificity of 99.6%, 97.3% and 99.5%, respectively. The effectiveness of the proposed method is proved by comparison with other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of mutual inductance between planar inductors on the same plane A novel active inductor with high self-resonance frequency high Q factor and independent adjustment of inductance Application of Artificial Intelligence Technology in Short-range Logistics Drones Image Registration Algorithm for Sequence Pathology Slices Of Pulmonary Nodule Study on SOC Estimation of Lithium Battery Based on Improved BP Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1