客户电力负荷概况的纵向研究

Etienne Gael Tajeuna, M. Bouguessa, Shengrui Wang
{"title":"客户电力负荷概况的纵向研究","authors":"Etienne Gael Tajeuna, M. Bouguessa, Shengrui Wang","doi":"10.1109/COMPSAC54236.2022.00048","DOIUrl":null,"url":null,"abstract":"We present a novel approach for studying evolving customer electricity load profiles. Based on the daily changes that may happen in a power grid, we devise a network-based method to identify and track the evolution of electricity consumption patterns over days. The tracking of these evolving patterns enables us to: (a) use Cox regression and LSTM recurrent neural network for modeling the lifetime of electricity consumption profiles and (b) trace the trajectories of customer electricity consumption behaviors to perform load forecasting.","PeriodicalId":330838,"journal":{"name":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Longitudinal Study of Customer Electricity Load Profiles\",\"authors\":\"Etienne Gael Tajeuna, M. Bouguessa, Shengrui Wang\",\"doi\":\"10.1109/COMPSAC54236.2022.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach for studying evolving customer electricity load profiles. Based on the daily changes that may happen in a power grid, we devise a network-based method to identify and track the evolution of electricity consumption patterns over days. The tracking of these evolving patterns enables us to: (a) use Cox regression and LSTM recurrent neural network for modeling the lifetime of electricity consumption profiles and (b) trace the trajectories of customer electricity consumption behaviors to perform load forecasting.\",\"PeriodicalId\":330838,\"journal\":{\"name\":\"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSAC54236.2022.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC54236.2022.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的方法来研究不断变化的客户电力负荷概况。基于电网中可能发生的日常变化,我们设计了一种基于网络的方法来识别和跟踪电力消耗模式在几天内的演变。对这些演变模式的跟踪使我们能够:(a)使用Cox回归和LSTM递归神经网络对电力消耗概况的生命周期进行建模;(b)跟踪客户电力消耗行为的轨迹,以执行负荷预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Longitudinal Study of Customer Electricity Load Profiles
We present a novel approach for studying evolving customer electricity load profiles. Based on the daily changes that may happen in a power grid, we devise a network-based method to identify and track the evolution of electricity consumption patterns over days. The tracking of these evolving patterns enables us to: (a) use Cox regression and LSTM recurrent neural network for modeling the lifetime of electricity consumption profiles and (b) trace the trajectories of customer electricity consumption behaviors to perform load forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Category-Aware App Permission Recommendation based on Sparse Linear Model Early Detection of At-Risk Students in a Calculus Course Apple-YOLO: A Novel Mobile Terminal Detector Based on YOLOv5 for Early Apple Leaf Diseases A Safe Route Recommendation Method Based on Driver Characteristics from Telematics Data GSDNet: An Anti-interference Cochlea Segmentation Model Based on GAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1