一种新的大数据处理的在线广义可能性聚类算法

Spyridoula D. Xenaki, K. Koutroumbas, A. Rontogiannis
{"title":"一种新的大数据处理的在线广义可能性聚类算法","authors":"Spyridoula D. Xenaki, K. Koutroumbas, A. Rontogiannis","doi":"10.23919/EUSIPCO.2018.8553146","DOIUrl":null,"url":null,"abstract":"In this paper a novel efficient online possibilistic c-means clustering algorithm, called Online Generalized Adaptive Possibilistic C-Means (O-GAPCM), is presented. The algorithm extends the abilities of the Adaptive Possibilistic C-Means (APCM) algorithm, allowing the study of cases where the data form compact and hyper-ellipsoidally shaped clusters in the feature space. In addition, the algorithm performs online processing, that is the data vectors are processed one-by-one and their impact is memorized to suitably defined parameters. It also embodies new procedures for creating new clusters and merging existing ones. Thus, O-GAPCM is able to unravel on its own the number and the actual hyper-ellipsoidal shape of the physical clusters formed by the data. Experimental results verify the effectiveness of O-GAPCM both in terms of accuracy and time efficiency.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel Online Generalized Possibilistic Clustering Algorithm for Big Data Processing\",\"authors\":\"Spyridoula D. Xenaki, K. Koutroumbas, A. Rontogiannis\",\"doi\":\"10.23919/EUSIPCO.2018.8553146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a novel efficient online possibilistic c-means clustering algorithm, called Online Generalized Adaptive Possibilistic C-Means (O-GAPCM), is presented. The algorithm extends the abilities of the Adaptive Possibilistic C-Means (APCM) algorithm, allowing the study of cases where the data form compact and hyper-ellipsoidally shaped clusters in the feature space. In addition, the algorithm performs online processing, that is the data vectors are processed one-by-one and their impact is memorized to suitably defined parameters. It also embodies new procedures for creating new clusters and merging existing ones. Thus, O-GAPCM is able to unravel on its own the number and the actual hyper-ellipsoidal shape of the physical clusters formed by the data. Experimental results verify the effectiveness of O-GAPCM both in terms of accuracy and time efficiency.\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的高效在线可能性c均值聚类算法——在线广义自适应可能性c均值聚类算法(O-GAPCM)。该算法扩展了自适应可能性c均值(APCM)算法的能力,允许研究数据在特征空间中形成紧凑和超椭球形聚类的情况。此外,该算法进行在线处理,即对数据向量逐一处理,并将其影响记忆到适当定义的参数中。它还包含了创建新集群和合并现有集群的新过程。因此,O-GAPCM能够自行解开由数据形成的物理星团的数量和实际超椭球形状。实验结果验证了O-GAPCM在精度和时间效率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Online Generalized Possibilistic Clustering Algorithm for Big Data Processing
In this paper a novel efficient online possibilistic c-means clustering algorithm, called Online Generalized Adaptive Possibilistic C-Means (O-GAPCM), is presented. The algorithm extends the abilities of the Adaptive Possibilistic C-Means (APCM) algorithm, allowing the study of cases where the data form compact and hyper-ellipsoidally shaped clusters in the feature space. In addition, the algorithm performs online processing, that is the data vectors are processed one-by-one and their impact is memorized to suitably defined parameters. It also embodies new procedures for creating new clusters and merging existing ones. Thus, O-GAPCM is able to unravel on its own the number and the actual hyper-ellipsoidal shape of the physical clusters formed by the data. Experimental results verify the effectiveness of O-GAPCM both in terms of accuracy and time efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1