使用自动机器翻译改进文档聚类

Xiang Wang, B. Qian, I. Davidson
{"title":"使用自动机器翻译改进文档聚类","authors":"Xiang Wang, B. Qian, I. Davidson","doi":"10.1145/2396761.2396844","DOIUrl":null,"url":null,"abstract":"With the development of statistical machine translation, we have ready-to-use tools that can translate documents from one language to many other languages. These translations provide different yet correlated views of the same set of documents. This gives rise to an intriguing question: can we use the extra information to achieve a better clustering of the documents? Some recent work on multiview clustering provided positive answers to this question. In this work, we propose an alternative approach to address this problem using the constrained clustering framework. Unlike traditional Must-Link and Cannot-Link constraints, the constraints generated from machine translation are dense yet noisy. We show how to incorporate this type of constraints by presenting two algorithms, one parametric and one non-parametric. Our algorithms are easy to implement, efficient, and can consistently improve the clustering of real data, namely the Reuters RCV1/RCV2 Multilingual Dataset. In contrast to existing multiview clustering algorithms, our technique does not need the compatibility or the conditional independence assumption, nor does it involve subtle parameter tuning.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Improving document clustering using automated machine translation\",\"authors\":\"Xiang Wang, B. Qian, I. Davidson\",\"doi\":\"10.1145/2396761.2396844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of statistical machine translation, we have ready-to-use tools that can translate documents from one language to many other languages. These translations provide different yet correlated views of the same set of documents. This gives rise to an intriguing question: can we use the extra information to achieve a better clustering of the documents? Some recent work on multiview clustering provided positive answers to this question. In this work, we propose an alternative approach to address this problem using the constrained clustering framework. Unlike traditional Must-Link and Cannot-Link constraints, the constraints generated from machine translation are dense yet noisy. We show how to incorporate this type of constraints by presenting two algorithms, one parametric and one non-parametric. Our algorithms are easy to implement, efficient, and can consistently improve the clustering of real data, namely the Reuters RCV1/RCV2 Multilingual Dataset. In contrast to existing multiview clustering algorithms, our technique does not need the compatibility or the conditional independence assumption, nor does it involve subtle parameter tuning.\",\"PeriodicalId\":313414,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2396761.2396844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2396844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

随着统计机器翻译的发展,我们有了现成的工具,可以将文档从一种语言翻译成许多其他语言。这些翻译提供了同一组文档的不同但相关的视图。这就产生了一个有趣的问题:我们可以使用额外的信息来实现更好的文档聚类吗?最近关于多视图聚类的一些研究为这个问题提供了积极的答案。在这项工作中,我们提出了一种使用约束聚类框架来解决这个问题的替代方法。与传统的“必须链接”和“不能链接”约束不同,机器翻译生成的约束是密集但有噪声的。我们展示了如何结合这种类型的约束通过提出两种算法,一个参数和一个非参数。我们的算法易于实现,效率高,并且能够持续改进真实数据(即路透社RCV1/RCV2多语言数据集)的聚类。与现有的多视图聚类算法相比,我们的技术不需要兼容性或条件独立性假设,也不涉及精细的参数调优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving document clustering using automated machine translation
With the development of statistical machine translation, we have ready-to-use tools that can translate documents from one language to many other languages. These translations provide different yet correlated views of the same set of documents. This gives rise to an intriguing question: can we use the extra information to achieve a better clustering of the documents? Some recent work on multiview clustering provided positive answers to this question. In this work, we propose an alternative approach to address this problem using the constrained clustering framework. Unlike traditional Must-Link and Cannot-Link constraints, the constraints generated from machine translation are dense yet noisy. We show how to incorporate this type of constraints by presenting two algorithms, one parametric and one non-parametric. Our algorithms are easy to implement, efficient, and can consistently improve the clustering of real data, namely the Reuters RCV1/RCV2 Multilingual Dataset. In contrast to existing multiview clustering algorithms, our technique does not need the compatibility or the conditional independence assumption, nor does it involve subtle parameter tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting web search success with fine-grained interaction data User activity profiling with multi-layer analysis Search result presentation based on faceted clustering Domain dependent query reformulation for web search CrowdTiles: presenting crowd-based information for event-driven information needs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1