并行多维不确定数据证据理论决策树

Li Fang, Wang Chong, Chen Yi
{"title":"并行多维不确定数据证据理论决策树","authors":"Li Fang, Wang Chong, Chen Yi","doi":"10.1109/WGEC.2009.197","DOIUrl":null,"url":null,"abstract":"Evidence theory decision tree is an efficient classification technique can be used in uncertain data mining field. But it can’t deal with large training sets of millions of samples which are common in this field. This paper develops parallel algorithm for evidence theory decision tree on the multidimensional cube structure. Example shows this algorithm can treat with very large multidimensional uncertain data training set and shows good parallel performance.","PeriodicalId":277950,"journal":{"name":"2009 Third International Conference on Genetic and Evolutionary Computing","volume":"302 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Multidimensional Uncertain Data Evidence Theory Decision Tree\",\"authors\":\"Li Fang, Wang Chong, Chen Yi\",\"doi\":\"10.1109/WGEC.2009.197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evidence theory decision tree is an efficient classification technique can be used in uncertain data mining field. But it can’t deal with large training sets of millions of samples which are common in this field. This paper develops parallel algorithm for evidence theory decision tree on the multidimensional cube structure. Example shows this algorithm can treat with very large multidimensional uncertain data training set and shows good parallel performance.\",\"PeriodicalId\":277950,\"journal\":{\"name\":\"2009 Third International Conference on Genetic and Evolutionary Computing\",\"volume\":\"302 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Third International Conference on Genetic and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WGEC.2009.197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third International Conference on Genetic and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WGEC.2009.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证据理论决策树是一种有效的分类技术,可用于不确定数据挖掘领域。但它不能处理该领域常见的数百万样本的大型训练集。提出了一种基于多维立方体结构的证据理论决策树并行算法。实例表明,该算法可以处理非常大的多维不确定数据训练集,并显示出良好的并行性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Multidimensional Uncertain Data Evidence Theory Decision Tree
Evidence theory decision tree is an efficient classification technique can be used in uncertain data mining field. But it can’t deal with large training sets of millions of samples which are common in this field. This paper develops parallel algorithm for evidence theory decision tree on the multidimensional cube structure. Example shows this algorithm can treat with very large multidimensional uncertain data training set and shows good parallel performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method of Robust Stabilization for the Delay Neural Networks with Nonlinear Perturbations A New Association Rules Mining Algorithm Based on Vector Research on Multidisciplinary Design Optimization Based Response Surface Technology of Artificial Neural Network Chaotic Analysis of Seismic Time Series and Short-Term Prediction with RBF Neural Networks An Optimization Approach of Ant Colony Algorithm and Adaptive Genetic Algorithm for MCM Interconnect Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1