改进粒子群算法在板坯堆积问题中的应用

Qiqi Zhang
{"title":"改进粒子群算法在板坯堆积问题中的应用","authors":"Qiqi Zhang","doi":"10.1109/ICAICA50127.2020.9182682","DOIUrl":null,"url":null,"abstract":"This paper researches the problem of slab stacking, builds up a mathematical model with an objective of maximize the slab comprehensive matching degree, the stack utilization degree and the inventory balance degree jointly based on stack height limits constraints, slab delivery time constraints and stack dispersion constraints, etc. The PSO algorithm is applied and improved by evolution state assessment strategy in order to help the solution to jump out of the local optimal. The validity of the proposed solving algorithm is demonstrated by numerical simulation experiment from the production data in iron-steel enterprise.","PeriodicalId":113564,"journal":{"name":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The application of improved particle swarm optimization in slab stacking problem\",\"authors\":\"Qiqi Zhang\",\"doi\":\"10.1109/ICAICA50127.2020.9182682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper researches the problem of slab stacking, builds up a mathematical model with an objective of maximize the slab comprehensive matching degree, the stack utilization degree and the inventory balance degree jointly based on stack height limits constraints, slab delivery time constraints and stack dispersion constraints, etc. The PSO algorithm is applied and improved by evolution state assessment strategy in order to help the solution to jump out of the local optimal. The validity of the proposed solving algorithm is demonstrated by numerical simulation experiment from the production data in iron-steel enterprise.\",\"PeriodicalId\":113564,\"journal\":{\"name\":\"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICA50127.2020.9182682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA50127.2020.9182682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了厚板堆垛问题,基于厚板堆垛高度限制约束、厚板交货时间约束和厚板分散约束等因素,建立了以厚板综合匹配度、厚板利用率和库存均衡度共同最大化为目标的数学模型。应用粒子群算法,并通过演化状态评估策略对其进行改进,使解跳出局部最优。通过钢铁企业生产数据的数值模拟实验,验证了所提求解算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The application of improved particle swarm optimization in slab stacking problem
This paper researches the problem of slab stacking, builds up a mathematical model with an objective of maximize the slab comprehensive matching degree, the stack utilization degree and the inventory balance degree jointly based on stack height limits constraints, slab delivery time constraints and stack dispersion constraints, etc. The PSO algorithm is applied and improved by evolution state assessment strategy in order to help the solution to jump out of the local optimal. The validity of the proposed solving algorithm is demonstrated by numerical simulation experiment from the production data in iron-steel enterprise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined prediction model of tuberculosis based on generalized regression neural network Spinal fracture lesions segmentation based on U-net Review of Research on Multilevel Inverter Based on Asynchronous Motor Application of neural network in abnormal AIS data identification Integrated platform of on-board computer and star sensor electronics system based on COTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1