248nm多层高反射涂层的激光损伤

H. Qi, Kui Yi, Hua Yu, Yun Cui, Da-wei Li, Zhixing Gao, J. Shao, Z. Fan
{"title":"248nm多层高反射涂层的激光损伤","authors":"H. Qi, Kui Yi, Hua Yu, Yun Cui, Da-wei Li, Zhixing Gao, J. Shao, Z. Fan","doi":"10.1117/12.752803","DOIUrl":null,"url":null,"abstract":"In order to study the effect of material properties on the laser induced damage of dielectric coatings at a wavelength of 248 nm, multilayer coatings were deposited by electron beam reactive evaporation technique onto fused silica substrates with the materials of hafnium oxide, aluminum oxide and silicon dioxide. Laser-induced damage thresholds (LIDTs), morphologies and profiles of damage sites of multilayer thin films were measured to investigate the damage mechanism. Besides, with our programmed software, the temperature rise in the multilayers was calculated to better understand the relationship between damage morphology, electric field peak location and depth of damage sites. The results indicate that the absorption of defect and the electric field distribution of thin film greatly contribute to LIDTs of thin films, and the control of defect, especially defect with strong absorption, is still the only way to improve the laser radiation resistivity of coatings in the UV spectral region.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Laser-induced damage of multilayer high-reflectance coatings for 248 nm\",\"authors\":\"H. Qi, Kui Yi, Hua Yu, Yun Cui, Da-wei Li, Zhixing Gao, J. Shao, Z. Fan\",\"doi\":\"10.1117/12.752803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to study the effect of material properties on the laser induced damage of dielectric coatings at a wavelength of 248 nm, multilayer coatings were deposited by electron beam reactive evaporation technique onto fused silica substrates with the materials of hafnium oxide, aluminum oxide and silicon dioxide. Laser-induced damage thresholds (LIDTs), morphologies and profiles of damage sites of multilayer thin films were measured to investigate the damage mechanism. Besides, with our programmed software, the temperature rise in the multilayers was calculated to better understand the relationship between damage morphology, electric field peak location and depth of damage sites. The results indicate that the absorption of defect and the electric field distribution of thin film greatly contribute to LIDTs of thin films, and the control of defect, especially defect with strong absorption, is still the only way to improve the laser radiation resistivity of coatings in the UV spectral region.\",\"PeriodicalId\":204978,\"journal\":{\"name\":\"SPIE Laser Damage\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Laser Damage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.752803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.752803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了研究材料性能对248nm激光诱导介质涂层损伤的影响,采用电子束反应蒸发技术在熔融石英衬底上沉积了以氧化铪、氧化铝和二氧化硅为主要材料的多层介质涂层。通过测量多层薄膜的激光诱导损伤阈值(LIDTs)、损伤部位的形貌和轮廓来研究损伤机制。此外,利用我们编写的软件计算了多层材料的温升,以便更好地了解损伤形貌、电场峰值位置和损伤部位深度之间的关系。结果表明,缺陷的吸收和薄膜的电场分布对薄膜的LIDTs有很大的影响,控制缺陷,特别是强吸收缺陷,仍然是提高涂层紫外光谱区激光辐射电阻率的唯一途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser-induced damage of multilayer high-reflectance coatings for 248 nm
In order to study the effect of material properties on the laser induced damage of dielectric coatings at a wavelength of 248 nm, multilayer coatings were deposited by electron beam reactive evaporation technique onto fused silica substrates with the materials of hafnium oxide, aluminum oxide and silicon dioxide. Laser-induced damage thresholds (LIDTs), morphologies and profiles of damage sites of multilayer thin films were measured to investigate the damage mechanism. Besides, with our programmed software, the temperature rise in the multilayers was calculated to better understand the relationship between damage morphology, electric field peak location and depth of damage sites. The results indicate that the absorption of defect and the electric field distribution of thin film greatly contribute to LIDTs of thin films, and the control of defect, especially defect with strong absorption, is still the only way to improve the laser radiation resistivity of coatings in the UV spectral region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of particle shape on the laser-contaminant interaction induced damage on the protective capping layer of 1ω high reflector mirror coatings Direct comparison of statistical damage frequency method and raster scan procedure Refined metrology of spatio-temporal dynamics of nanosecond laser pulses Characterization of damage precursor density from laser damage probability measurements with non-Gaussian beams Direct absorption measurements in thin rods and optical fibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1