{"title":"时变参数的ls型估计","authors":"Zhang Hong Hua, Zhang Hong Yue","doi":"10.23919/ACC.1992.4792774","DOIUrl":null,"url":null,"abstract":"Estimating the time-varying parameter ¿<inf>k</inf><sup>o</sup>, of linear model y<inf>k</inf> = ¿<inf>k</inf><sup>r</sup>¿<inf>k</inf><sup>o</sup> + v<inf>k</inf> is attracting many experts attension in the field of system identification and adaptive control. Guo[1990] established the convergence and stability properties of Kalman filter based parameter estimator for the model. Chen [1990] proved the consistency of LMS-type algorithm for estimating the parameter ¿<inf>k</inf><sup>o</sup>. However, there is still no result on the properties of LS- type estimator for the model. In this paper, we propose the concept of generalized consistency of algorithms for estimating time-varying parameter, thus construct a kind of least-square(LS) algorithm which has the property of generalized consistency under the condition of \"conditional richness\".","PeriodicalId":297258,"journal":{"name":"1992 American Control Conference","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LS-Type Estimation for Time-Varying Parameters\",\"authors\":\"Zhang Hong Hua, Zhang Hong Yue\",\"doi\":\"10.23919/ACC.1992.4792774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the time-varying parameter ¿<inf>k</inf><sup>o</sup>, of linear model y<inf>k</inf> = ¿<inf>k</inf><sup>r</sup>¿<inf>k</inf><sup>o</sup> + v<inf>k</inf> is attracting many experts attension in the field of system identification and adaptive control. Guo[1990] established the convergence and stability properties of Kalman filter based parameter estimator for the model. Chen [1990] proved the consistency of LMS-type algorithm for estimating the parameter ¿<inf>k</inf><sup>o</sup>. However, there is still no result on the properties of LS- type estimator for the model. In this paper, we propose the concept of generalized consistency of algorithms for estimating time-varying parameter, thus construct a kind of least-square(LS) algorithm which has the property of generalized consistency under the condition of \\\"conditional richness\\\".\",\"PeriodicalId\":297258,\"journal\":{\"name\":\"1992 American Control Conference\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1992 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.1992.4792774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1992.4792774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimating the time-varying parameter ¿ko, of linear model yk = ¿kr¿ko + vk is attracting many experts attension in the field of system identification and adaptive control. Guo[1990] established the convergence and stability properties of Kalman filter based parameter estimator for the model. Chen [1990] proved the consistency of LMS-type algorithm for estimating the parameter ¿ko. However, there is still no result on the properties of LS- type estimator for the model. In this paper, we propose the concept of generalized consistency of algorithms for estimating time-varying parameter, thus construct a kind of least-square(LS) algorithm which has the property of generalized consistency under the condition of "conditional richness".