S. S. H. Zaidi, Selin Aviyente, M. Salman, Kwang-Kuen Shin, E. Strangas
{"title":"基于隐马尔可夫模型的直流起动电机故障预测","authors":"S. S. H. Zaidi, Selin Aviyente, M. Salman, Kwang-Kuen Shin, E. Strangas","doi":"10.1109/DEMPED.2009.5292778","DOIUrl":null,"url":null,"abstract":"This paper deals with the prognosis of gear faults in DC machines using time frequency distribution methods. The proposed method presents future state prediction of the machine faults using Hidden Markov models. Different methods for estimating the parameters of hidden Markov model with limited data are discussed. The proposed method uses Matching Pursuit decomposition and projections of the training data on linear discriminant planes for estimation of model parameters. Experimental results are presented to illustrate the method.","PeriodicalId":405777,"journal":{"name":"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Failure prognosis of DC starter motors using hidden Markov models\",\"authors\":\"S. S. H. Zaidi, Selin Aviyente, M. Salman, Kwang-Kuen Shin, E. Strangas\",\"doi\":\"10.1109/DEMPED.2009.5292778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the prognosis of gear faults in DC machines using time frequency distribution methods. The proposed method presents future state prediction of the machine faults using Hidden Markov models. Different methods for estimating the parameters of hidden Markov model with limited data are discussed. The proposed method uses Matching Pursuit decomposition and projections of the training data on linear discriminant planes for estimation of model parameters. Experimental results are presented to illustrate the method.\",\"PeriodicalId\":405777,\"journal\":{\"name\":\"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEMPED.2009.5292778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2009.5292778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Failure prognosis of DC starter motors using hidden Markov models
This paper deals with the prognosis of gear faults in DC machines using time frequency distribution methods. The proposed method presents future state prediction of the machine faults using Hidden Markov models. Different methods for estimating the parameters of hidden Markov model with limited data are discussed. The proposed method uses Matching Pursuit decomposition and projections of the training data on linear discriminant planes for estimation of model parameters. Experimental results are presented to illustrate the method.