基于隐马尔可夫模型的直流起动电机故障预测

S. S. H. Zaidi, Selin Aviyente, M. Salman, Kwang-Kuen Shin, E. Strangas
{"title":"基于隐马尔可夫模型的直流起动电机故障预测","authors":"S. S. H. Zaidi, Selin Aviyente, M. Salman, Kwang-Kuen Shin, E. Strangas","doi":"10.1109/DEMPED.2009.5292778","DOIUrl":null,"url":null,"abstract":"This paper deals with the prognosis of gear faults in DC machines using time frequency distribution methods. The proposed method presents future state prediction of the machine faults using Hidden Markov models. Different methods for estimating the parameters of hidden Markov model with limited data are discussed. The proposed method uses Matching Pursuit decomposition and projections of the training data on linear discriminant planes for estimation of model parameters. Experimental results are presented to illustrate the method.","PeriodicalId":405777,"journal":{"name":"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Failure prognosis of DC starter motors using hidden Markov models\",\"authors\":\"S. S. H. Zaidi, Selin Aviyente, M. Salman, Kwang-Kuen Shin, E. Strangas\",\"doi\":\"10.1109/DEMPED.2009.5292778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the prognosis of gear faults in DC machines using time frequency distribution methods. The proposed method presents future state prediction of the machine faults using Hidden Markov models. Different methods for estimating the parameters of hidden Markov model with limited data are discussed. The proposed method uses Matching Pursuit decomposition and projections of the training data on linear discriminant planes for estimation of model parameters. Experimental results are presented to illustrate the method.\",\"PeriodicalId\":405777,\"journal\":{\"name\":\"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEMPED.2009.5292778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2009.5292778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文采用时频分布方法对直流电机齿轮故障进行了预测。该方法利用隐马尔可夫模型对机器故障的未来状态进行预测。讨论了有限数据下隐马尔可夫模型参数估计的不同方法。该方法利用匹配追踪分解和训练数据在线性判别平面上的投影来估计模型参数。实验结果说明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Failure prognosis of DC starter motors using hidden Markov models
This paper deals with the prognosis of gear faults in DC machines using time frequency distribution methods. The proposed method presents future state prediction of the machine faults using Hidden Markov models. Different methods for estimating the parameters of hidden Markov model with limited data are discussed. The proposed method uses Matching Pursuit decomposition and projections of the training data on linear discriminant planes for estimation of model parameters. Experimental results are presented to illustrate the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative study of two modelling implementation methods of a wound-rotor induction machine: Simulation, fault diagnosis and validation Fault diagnosis of linear bearings in brushless AC linear motors Detection of insulation faults on disc-type winding transformers by means of leakage flux analysis Narrowband angle modulations in induction motor complex current vectors Thermal modeling and real time overload capacity prediction of overhead power lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1