W. Zhan, Yuan Yuan, Chang Liu, Peng Chen, Yumeng Liang, Yu Wang, J. Arauz-Lara, Feifei Jia
{"title":"0D、2D和3D辉钼矿的制备及应用综述","authors":"W. Zhan, Yuan Yuan, Chang Liu, Peng Chen, Yumeng Liang, Yu Wang, J. Arauz-Lara, Feifei Jia","doi":"10.20517/mmm.2022.04","DOIUrl":null,"url":null,"abstract":"Molybdenite (MoS2) has been widely used in the fields of catalysis, desalination, energy storage and conversion and optoelectronics as a result of its unique crystal structures and unusual properties. In the last decade, the modification of the surface, structural and semiconducting properties of zero-, two- and three-dimensional (0D, 2D and 3D) MoS2 for enhanced applications has attracted considerable attention. In this review, we summarize the synthesis, modification methods and application of 0D, 2D and 3D MoS2. The unique structures and properties of 0D, 2D and 3D MoS2 are first introduced. Next, the preparation methods of 0D, 2D and 3D MoS2 are summarized. The modification methods, including surface, structural and composite engineering, for enhancing the physical and chemical properties of 0D, 2D and 3D are also discussed. Finally, inspired by natural and modified MoS2, future suggestions for the design of novel 0D, 2D and 3D MoS2 for various applications are also suggested. This review offers new insights into the design and construction of novel and efficient 0D, 2D and 3D MoS2 for practical applications.","PeriodicalId":319570,"journal":{"name":"Minerals and Mineral Materials","volume":"28 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Preparation and application of 0D, 2D and 3D molybdenite: a review\",\"authors\":\"W. Zhan, Yuan Yuan, Chang Liu, Peng Chen, Yumeng Liang, Yu Wang, J. Arauz-Lara, Feifei Jia\",\"doi\":\"10.20517/mmm.2022.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molybdenite (MoS2) has been widely used in the fields of catalysis, desalination, energy storage and conversion and optoelectronics as a result of its unique crystal structures and unusual properties. In the last decade, the modification of the surface, structural and semiconducting properties of zero-, two- and three-dimensional (0D, 2D and 3D) MoS2 for enhanced applications has attracted considerable attention. In this review, we summarize the synthesis, modification methods and application of 0D, 2D and 3D MoS2. The unique structures and properties of 0D, 2D and 3D MoS2 are first introduced. Next, the preparation methods of 0D, 2D and 3D MoS2 are summarized. The modification methods, including surface, structural and composite engineering, for enhancing the physical and chemical properties of 0D, 2D and 3D are also discussed. Finally, inspired by natural and modified MoS2, future suggestions for the design of novel 0D, 2D and 3D MoS2 for various applications are also suggested. This review offers new insights into the design and construction of novel and efficient 0D, 2D and 3D MoS2 for practical applications.\",\"PeriodicalId\":319570,\"journal\":{\"name\":\"Minerals and Mineral Materials\",\"volume\":\"28 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals and Mineral Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/mmm.2022.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals and Mineral Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/mmm.2022.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation and application of 0D, 2D and 3D molybdenite: a review
Molybdenite (MoS2) has been widely used in the fields of catalysis, desalination, energy storage and conversion and optoelectronics as a result of its unique crystal structures and unusual properties. In the last decade, the modification of the surface, structural and semiconducting properties of zero-, two- and three-dimensional (0D, 2D and 3D) MoS2 for enhanced applications has attracted considerable attention. In this review, we summarize the synthesis, modification methods and application of 0D, 2D and 3D MoS2. The unique structures and properties of 0D, 2D and 3D MoS2 are first introduced. Next, the preparation methods of 0D, 2D and 3D MoS2 are summarized. The modification methods, including surface, structural and composite engineering, for enhancing the physical and chemical properties of 0D, 2D and 3D are also discussed. Finally, inspired by natural and modified MoS2, future suggestions for the design of novel 0D, 2D and 3D MoS2 for various applications are also suggested. This review offers new insights into the design and construction of novel and efficient 0D, 2D and 3D MoS2 for practical applications.