分析优化算法、支持向量机、决策树、单神经网络、孟古那肯、Adaboost单套袋

Agus Heri Yunial
{"title":"分析优化算法、支持向量机、决策树、单神经网络、孟古那肯、Adaboost单套袋","authors":"Agus Heri Yunial","doi":"10.32493/informatika.v5i3.6609","DOIUrl":null,"url":null,"abstract":"The accuracy value of a classification algorithm shows whether the algorithm is good or not in classifying data which can affect the results of the classification method in data mining processing. In this study, the author will analyze the effect of optimization using the adaboost and bagging methods on the results of the classification algorithm accuracy value on support vector machines, decision trees, and neural networks. This study uses a software in data mining processing that is using the Weka application version 3.8.1. The test method used was a percentage split of 70%. In this study, the results show that adaboost optimization can increase the accuracy value of the support vector machine algorithm from 88.93% to 89.10%, decision trees from 90.24% to 90.36%, and neural network from 88.53% to 88.61%, while bagging optimization can only increase Algortima decision trees become 90.55%, and the neural network becomes 90.38%, because the accuracy value of the support vector machine algorithm is the same as the accuracy value of bagging, which is 88.93%.","PeriodicalId":251854,"journal":{"name":"Jurnal Informatika Universitas Pamulang","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analisis Optimasi Algoritma Klasifikasi Support Vector Machine, Decision Trees, dan Neural Network Menggunakan Adaboost dan Bagging\",\"authors\":\"Agus Heri Yunial\",\"doi\":\"10.32493/informatika.v5i3.6609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy value of a classification algorithm shows whether the algorithm is good or not in classifying data which can affect the results of the classification method in data mining processing. In this study, the author will analyze the effect of optimization using the adaboost and bagging methods on the results of the classification algorithm accuracy value on support vector machines, decision trees, and neural networks. This study uses a software in data mining processing that is using the Weka application version 3.8.1. The test method used was a percentage split of 70%. In this study, the results show that adaboost optimization can increase the accuracy value of the support vector machine algorithm from 88.93% to 89.10%, decision trees from 90.24% to 90.36%, and neural network from 88.53% to 88.61%, while bagging optimization can only increase Algortima decision trees become 90.55%, and the neural network becomes 90.38%, because the accuracy value of the support vector machine algorithm is the same as the accuracy value of bagging, which is 88.93%.\",\"PeriodicalId\":251854,\"journal\":{\"name\":\"Jurnal Informatika Universitas Pamulang\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Informatika Universitas Pamulang\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32493/informatika.v5i3.6609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Universitas Pamulang","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32493/informatika.v5i3.6609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在数据挖掘处理中,分类算法的准确率值反映了该算法对数据进行分类的好坏,影响分类方法的结果。在本研究中,作者将分析使用adaboost和bagging方法对支持向量机、决策树和神经网络上分类算法精度值结果的影响。本研究使用的数据挖掘处理软件使用的是Weka 3.8.1版本的应用程序。使用的测试方法是70%的百分比分割。本研究结果表明,adaboost优化可以将支持向量机算法的准确率值从88.93%提高到89.10%,将决策树的准确率值从90.24%提高到90.36%,将神经网络的准确率值从88.53%提高到88.61%,而套袋优化只能将Algortima决策树的准确率值提高到90.55%,将神经网络的准确率值提高到90.38%,因为支持向量机算法的准确率值与套袋的准确率值相同,都是88.93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analisis Optimasi Algoritma Klasifikasi Support Vector Machine, Decision Trees, dan Neural Network Menggunakan Adaboost dan Bagging
The accuracy value of a classification algorithm shows whether the algorithm is good or not in classifying data which can affect the results of the classification method in data mining processing. In this study, the author will analyze the effect of optimization using the adaboost and bagging methods on the results of the classification algorithm accuracy value on support vector machines, decision trees, and neural networks. This study uses a software in data mining processing that is using the Weka application version 3.8.1. The test method used was a percentage split of 70%. In this study, the results show that adaboost optimization can increase the accuracy value of the support vector machine algorithm from 88.93% to 89.10%, decision trees from 90.24% to 90.36%, and neural network from 88.53% to 88.61%, while bagging optimization can only increase Algortima decision trees become 90.55%, and the neural network becomes 90.38%, because the accuracy value of the support vector machine algorithm is the same as the accuracy value of bagging, which is 88.93%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Penerapan Metode Simple Columnar Transposition (SCTR) untuk Aplikasi Enkripsi Teks Berbasis Android Pentingnya Membangun Platform Kolaborasi Multi-Stakeholder sebagai Key Enabling Factor dalam Membangun Ekosistem Inovasi Industri 4.0 di Era New Normal Rancang Bangun Sistem Informasi Penggajian Karyawan PT. Boetomix Nusantara Lestari Berbasis WEB Penerapan Metode MVC Framework Code Igniter untuk Sistem Informasi Administrasi Transaksi E-Commerce Perusahaan Aktualita Penerapan Algoritma Profile Matching pada Aplikasi Computer Based Test (CBT) dalam Proses Seleksi Mahasiswa Baru
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1