{"title":"基于分而治之模式的FMST框架下基于质心的聚类算法比较","authors":"S. S. Sandhu, Ashwin R. Jadhav, B. Tripathy","doi":"10.1109/ICRCICN.2017.8234510","DOIUrl":null,"url":null,"abstract":"The practice of using divide and conquer techniques to solve complex, time-consuming problems has been in use for a very long time. Here we evaluate the performance of centroid-based clustering techniques, specifically k-means and its two approximation algorithms, the k-means++ and k-means|| (also known as Scalable k-means++), as divide and conquer paradigms applied for the creation of minimum spanning trees. The algorithms will be run on different datasets to get a good evaluation of their respective performances. This is a continuation of our previous work carried out in developing the KMST+ algorithm in the context of fast minimum spanning tree (FMST) frameworks.","PeriodicalId":166298,"journal":{"name":"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of centroid-based clustering algorithms in the context of divide and conquer paradigm based FMST framework\",\"authors\":\"S. S. Sandhu, Ashwin R. Jadhav, B. Tripathy\",\"doi\":\"10.1109/ICRCICN.2017.8234510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The practice of using divide and conquer techniques to solve complex, time-consuming problems has been in use for a very long time. Here we evaluate the performance of centroid-based clustering techniques, specifically k-means and its two approximation algorithms, the k-means++ and k-means|| (also known as Scalable k-means++), as divide and conquer paradigms applied for the creation of minimum spanning trees. The algorithms will be run on different datasets to get a good evaluation of their respective performances. This is a continuation of our previous work carried out in developing the KMST+ algorithm in the context of fast minimum spanning tree (FMST) frameworks.\",\"PeriodicalId\":166298,\"journal\":{\"name\":\"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRCICN.2017.8234510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN.2017.8234510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of centroid-based clustering algorithms in the context of divide and conquer paradigm based FMST framework
The practice of using divide and conquer techniques to solve complex, time-consuming problems has been in use for a very long time. Here we evaluate the performance of centroid-based clustering techniques, specifically k-means and its two approximation algorithms, the k-means++ and k-means|| (also known as Scalable k-means++), as divide and conquer paradigms applied for the creation of minimum spanning trees. The algorithms will be run on different datasets to get a good evaluation of their respective performances. This is a continuation of our previous work carried out in developing the KMST+ algorithm in the context of fast minimum spanning tree (FMST) frameworks.