通过近似的并行算法:图,数据隐私和机器学习

A. Pothen
{"title":"通过近似的并行算法:图,数据隐私和机器学习","authors":"A. Pothen","doi":"10.1145/3310273.3323431","DOIUrl":null,"url":null,"abstract":"We describe a paradigm for designing parallel algorithms on massive graphs by employing approximation techniques. Instead of solving a problem exactly, for which efficient parallel algorithms do not exist, we seek a solution with provable approximation guarantees via approximation algorithms. Furthermore, we design approximation algorithms with high degrees of concurrency. We show the computation of degree-constrained subgraphs as an example of this paradigm.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel algorithms through approximation: graphs, data privacy and machine learning\",\"authors\":\"A. Pothen\",\"doi\":\"10.1145/3310273.3323431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a paradigm for designing parallel algorithms on massive graphs by employing approximation techniques. Instead of solving a problem exactly, for which efficient parallel algorithms do not exist, we seek a solution with provable approximation guarantees via approximation algorithms. Furthermore, we design approximation algorithms with high degrees of concurrency. We show the computation of degree-constrained subgraphs as an example of this paradigm.\",\"PeriodicalId\":431860,\"journal\":{\"name\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310273.3323431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3323431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种利用近似技术在海量图上设计并行算法的范例。对于不存在有效并行算法的问题,我们不是精确地求解,而是通过近似算法寻求具有可证明近似保证的解。此外,我们设计了具有高度并发性的近似算法。我们展示了度约束子图的计算作为这个范例的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel algorithms through approximation: graphs, data privacy and machine learning
We describe a paradigm for designing parallel algorithms on massive graphs by employing approximation techniques. Instead of solving a problem exactly, for which efficient parallel algorithms do not exist, we seek a solution with provable approximation guarantees via approximation algorithms. Furthermore, we design approximation algorithms with high degrees of concurrency. We show the computation of degree-constrained subgraphs as an example of this paradigm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extending classical processors to support future large scale quantum accelerators Analysing the tor web with high performance graph algorithms The FitOptiVis ECSEL project: highly efficient distributed embedded image/video processing in cyber-physical systems The german informatics society's new ethical guidelines: POSTER Go green radio astronomy: Approximate Computing Perspective: Opportunities and Challenges: POSTER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1