利用霍夫变换检测轨道上的障碍物

L. F. Rodríguez, J. A. Uribe, J. F. V. Bonilla
{"title":"利用霍夫变换检测轨道上的障碍物","authors":"L. F. Rodríguez, J. A. Uribe, J. F. V. Bonilla","doi":"10.1109/STSIVA.2012.6340602","DOIUrl":null,"url":null,"abstract":"Autonomous systems can assist humans in the important task of safe driving. Such systems can warn people about possible risks, take actions to avoid accidents or guide the vehicle without human supervision. Whether in cars or trains or ships the artificial vision algorithms offer an alternative for the design and implementation of autonomous driving systems. In railway scenarios cameras in front of the train can assist drivers with the identification of obstacles or strange objects on the rails. Multiple factors add huge complexity to this task. The changing conditions create a scene where background is hard to detect, lighting varies and process speed must be fast. This article describes a first approximation to the problem where using the Hough transform, the rails and area of interest are detected. On this area a systematic search is done for finding and delimiting possible obstacles. Our system accomplished a real time performance when employed in the analysis of recorded videos from the driver perspective. Using digital added obstacles our algorithm detects mostly all of them and warns if the objects over the rail can create a danger to the safety travel of the train.","PeriodicalId":383297,"journal":{"name":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Obstacle detection over rails using hough transform\",\"authors\":\"L. F. Rodríguez, J. A. Uribe, J. F. V. Bonilla\",\"doi\":\"10.1109/STSIVA.2012.6340602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous systems can assist humans in the important task of safe driving. Such systems can warn people about possible risks, take actions to avoid accidents or guide the vehicle without human supervision. Whether in cars or trains or ships the artificial vision algorithms offer an alternative for the design and implementation of autonomous driving systems. In railway scenarios cameras in front of the train can assist drivers with the identification of obstacles or strange objects on the rails. Multiple factors add huge complexity to this task. The changing conditions create a scene where background is hard to detect, lighting varies and process speed must be fast. This article describes a first approximation to the problem where using the Hough transform, the rails and area of interest are detected. On this area a systematic search is done for finding and delimiting possible obstacles. Our system accomplished a real time performance when employed in the analysis of recorded videos from the driver perspective. Using digital added obstacles our algorithm detects mostly all of them and warns if the objects over the rail can create a danger to the safety travel of the train.\",\"PeriodicalId\":383297,\"journal\":{\"name\":\"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2012.6340602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2012.6340602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

自动驾驶系统可以帮助人类完成安全驾驶的重要任务。这样的系统可以警告人们可能存在的风险,采取措施避免事故,或者在没有人类监督的情况下引导车辆。无论是在汽车、火车还是船舶上,人工视觉算法都为自动驾驶系统的设计和实现提供了另一种选择。在铁路场景中,列车前方的摄像头可以帮助司机识别轨道上的障碍物或奇怪物体。多种因素增加了这项任务的复杂性。不断变化的条件创造了一个难以检测背景,光线变化和处理速度必须快的场景。本文描述了该问题的第一个近似,其中使用霍夫变换检测轨道和感兴趣的区域。在这个区域进行系统的搜索,以发现和划定可能的障碍。我们的系统在从驾驶员角度对录制的视频进行分析时实现了实时性能。使用数字添加障碍物,我们的算法检测到几乎所有的障碍物,并在轨道上的物体可能对火车的安全行驶造成危险时发出警告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Obstacle detection over rails using hough transform
Autonomous systems can assist humans in the important task of safe driving. Such systems can warn people about possible risks, take actions to avoid accidents or guide the vehicle without human supervision. Whether in cars or trains or ships the artificial vision algorithms offer an alternative for the design and implementation of autonomous driving systems. In railway scenarios cameras in front of the train can assist drivers with the identification of obstacles or strange objects on the rails. Multiple factors add huge complexity to this task. The changing conditions create a scene where background is hard to detect, lighting varies and process speed must be fast. This article describes a first approximation to the problem where using the Hough transform, the rails and area of interest are detected. On this area a systematic search is done for finding and delimiting possible obstacles. Our system accomplished a real time performance when employed in the analysis of recorded videos from the driver perspective. Using digital added obstacles our algorithm detects mostly all of them and warns if the objects over the rail can create a danger to the safety travel of the train.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Constrained affinity matrix for spectral clustering: A basic semi-supervised extension Path planning applied to the mobile robot GBot Influence of structural similarities between sequences over ontology annotation proteins using BLASTP Technical analog-digital for segmentation of spectral images acquired with an accousto-optic system Development of a segmentation algorithm for ECG signals, simultaneously applying continuous and discrete wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1