VPI-Mlogs:一个基于网络的机器学习解决方案,适用于岩石物理学应用

Anh Tuan Nguyen
{"title":"VPI-Mlogs:一个基于网络的机器学习解决方案,适用于岩石物理学应用","authors":"Anh Tuan Nguyen","doi":"10.47800/pvj.2022.10-06","DOIUrl":null,"url":null,"abstract":"Machine learning is an important part of the data science field. In petrophysics, machine learning algorithms and applications have been widely approached. In this context, Vietnam Petroleum Institute (VPI) has researched and deployed several effective prediction models, namely missing log prediction, fracture zone and fracture density forecast, etc. As one of our solutions, VPI-MLogs is a web-based deployment platform which integrates data preprocessing, exploratory data analysis, visualisation and model execution. Using the most popular data analysis programming language, Python, this approach gives users a powerful tool to deal with the petrophysical logs section. The solution helps to narrow the gap between common knowledge and petrophysics insights. This article will focus on the web-based application which integrates many solutions to grasp petrophysical data.","PeriodicalId":294988,"journal":{"name":"Petrovietnam Journal","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VPI-Mlogs: A web-based machine learning solution for applications in petrophysics\",\"authors\":\"Anh Tuan Nguyen\",\"doi\":\"10.47800/pvj.2022.10-06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is an important part of the data science field. In petrophysics, machine learning algorithms and applications have been widely approached. In this context, Vietnam Petroleum Institute (VPI) has researched and deployed several effective prediction models, namely missing log prediction, fracture zone and fracture density forecast, etc. As one of our solutions, VPI-MLogs is a web-based deployment platform which integrates data preprocessing, exploratory data analysis, visualisation and model execution. Using the most popular data analysis programming language, Python, this approach gives users a powerful tool to deal with the petrophysical logs section. The solution helps to narrow the gap between common knowledge and petrophysics insights. This article will focus on the web-based application which integrates many solutions to grasp petrophysical data.\",\"PeriodicalId\":294988,\"journal\":{\"name\":\"Petrovietnam Journal\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petrovietnam Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47800/pvj.2022.10-06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrovietnam Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47800/pvj.2022.10-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习是数据科学领域的重要组成部分。在岩石物理学中,机器学习算法和应用已经得到了广泛的研究。在此背景下,越南石油研究所(VPI)研究并部署了几种有效的预测模型,即缺失测井预测、裂缝带预测和裂缝密度预测等。作为我们的解决方案之一,VPI-MLogs是一个基于web的部署平台,它集成了数据预处理、探索性数据分析、可视化和模型执行。使用最流行的数据分析编程语言Python,该方法为用户提供了处理岩石物理测井剖面的强大工具。该解决方案有助于缩小普通知识与岩石物理学见解之间的差距。本文将重点介绍基于web的应用程序,该应用程序集成了许多解决方案来获取岩石物理数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VPI-Mlogs: A web-based machine learning solution for applications in petrophysics
Machine learning is an important part of the data science field. In petrophysics, machine learning algorithms and applications have been widely approached. In this context, Vietnam Petroleum Institute (VPI) has researched and deployed several effective prediction models, namely missing log prediction, fracture zone and fracture density forecast, etc. As one of our solutions, VPI-MLogs is a web-based deployment platform which integrates data preprocessing, exploratory data analysis, visualisation and model execution. Using the most popular data analysis programming language, Python, this approach gives users a powerful tool to deal with the petrophysical logs section. The solution helps to narrow the gap between common knowledge and petrophysics insights. This article will focus on the web-based application which integrates many solutions to grasp petrophysical data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Xu hướng chuyển dịch năng lượng và các giải pháp ứng phó của Tập đoàn Dầu khí Việt Nam Xu hướng chuyển dịch năng lượng và kinh nghiệm thực hiện xanh hóa của một số nhà máy lọc hóa dầu trên thế giới Nghiên cứu phương pháp tính dấu chân carbon cho một số sản phẩm dầu khí ở Việt Nam Phí dịch vụ môi trường rừng: Từ lý thuyết đến thực tiễn áp dụng tại các nhà máy điện lực dầu khí Các công cụ chính sách hỗ trợ và tạo đòn bẩy để phát triển ngành điện gió Việt Nam từ kinh nghiệm của một số nước trên thế giới
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1