{"title":"掺杂氧化铈纳米结构的电导率和活化能研究","authors":"N. Priya, K. Sandhya, Deepthi N. Rajendran","doi":"10.1515/eetech-2017-0004","DOIUrl":null,"url":null,"abstract":"Abstract Ce0.8Gd0.2O2−δ (GDC) and Ce0.8Sm0.2O2−δ (SDC) nanocrystalline materials are prepared by a solid state reaction method. The synthesized nano crystalline solid solutions have cubic fluorite structure as evident from XRD patterns. The materials are qualitatively analyzed by FTIR. The morphology, size and shape of grains etc. are identified from the SEM images. The grain size of GDC is smaller than that of SDC. The better morphology is obtained for GDC. Hence, this is electrically characterized. The activation energy is calculated from the slope of Arrhenius plot (showing variation of conductivity with temperature).","PeriodicalId":443383,"journal":{"name":"Electrochemical Energy Technology","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Study on Electrical conductivity and Activation Energy of doped Ceria nanostructures\",\"authors\":\"N. Priya, K. Sandhya, Deepthi N. Rajendran\",\"doi\":\"10.1515/eetech-2017-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ce0.8Gd0.2O2−δ (GDC) and Ce0.8Sm0.2O2−δ (SDC) nanocrystalline materials are prepared by a solid state reaction method. The synthesized nano crystalline solid solutions have cubic fluorite structure as evident from XRD patterns. The materials are qualitatively analyzed by FTIR. The morphology, size and shape of grains etc. are identified from the SEM images. The grain size of GDC is smaller than that of SDC. The better morphology is obtained for GDC. Hence, this is electrically characterized. The activation energy is calculated from the slope of Arrhenius plot (showing variation of conductivity with temperature).\",\"PeriodicalId\":443383,\"journal\":{\"name\":\"Electrochemical Energy Technology\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemical Energy Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eetech-2017-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical Energy Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eetech-2017-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on Electrical conductivity and Activation Energy of doped Ceria nanostructures
Abstract Ce0.8Gd0.2O2−δ (GDC) and Ce0.8Sm0.2O2−δ (SDC) nanocrystalline materials are prepared by a solid state reaction method. The synthesized nano crystalline solid solutions have cubic fluorite structure as evident from XRD patterns. The materials are qualitatively analyzed by FTIR. The morphology, size and shape of grains etc. are identified from the SEM images. The grain size of GDC is smaller than that of SDC. The better morphology is obtained for GDC. Hence, this is electrically characterized. The activation energy is calculated from the slope of Arrhenius plot (showing variation of conductivity with temperature).