基于图形的人类行为模拟数据分析

Ales Tavcar, M. Gams, M. Kvassay, M. Laclavik, L. Hluchý, B. Schneider, H. Bracker
{"title":"基于图形的人类行为模拟数据分析","authors":"Ales Tavcar, M. Gams, M. Kvassay, M. Laclavik, L. Hluchý, B. Schneider, H. Bracker","doi":"10.1109/SAMI.2012.6209003","DOIUrl":null,"url":null,"abstract":"In this article, which describes our current work in progress, we demonstrate the potential and universality of graph-based methods for analysing data from computer simulations of human behaviour. The first method, MASDA algorithm, analyses action sequences through an ontology-driven process of abstraction, and aims at isolating strategic sequences and strategic action descriptions in a graphical and symbolic form. The second method, based on the spreading activation algorithm, aims at finding significant correlations between the simulation results and its various internal parameters, settings, events and entities. We illustrate our methods in the context of the EDA project A-0938-RT-GC EUSAS, where they are to be used after validation.","PeriodicalId":158731,"journal":{"name":"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Graph-based analysis of data from human behaviour simulations\",\"authors\":\"Ales Tavcar, M. Gams, M. Kvassay, M. Laclavik, L. Hluchý, B. Schneider, H. Bracker\",\"doi\":\"10.1109/SAMI.2012.6209003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, which describes our current work in progress, we demonstrate the potential and universality of graph-based methods for analysing data from computer simulations of human behaviour. The first method, MASDA algorithm, analyses action sequences through an ontology-driven process of abstraction, and aims at isolating strategic sequences and strategic action descriptions in a graphical and symbolic form. The second method, based on the spreading activation algorithm, aims at finding significant correlations between the simulation results and its various internal parameters, settings, events and entities. We illustrate our methods in the context of the EDA project A-0938-RT-GC EUSAS, where they are to be used after validation.\",\"PeriodicalId\":158731,\"journal\":{\"name\":\"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2012.6209003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2012.6209003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们描述了我们目前正在进行的工作,我们展示了基于图形的方法分析计算机模拟人类行为数据的潜力和普遍性。第一种方法是MASDA算法,通过本体驱动的抽象过程分析行动序列,旨在以图形化和符号化的形式分离战略序列和战略行动描述。第二种方法是基于扩散激活算法,旨在寻找仿真结果与其各种内部参数、设置、事件和实体之间的显著相关性。我们在EDA项目A-0938-RT-GC EUSAS的背景下说明了我们的方法,这些方法将在验证后使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph-based analysis of data from human behaviour simulations
In this article, which describes our current work in progress, we demonstrate the potential and universality of graph-based methods for analysing data from computer simulations of human behaviour. The first method, MASDA algorithm, analyses action sequences through an ontology-driven process of abstraction, and aims at isolating strategic sequences and strategic action descriptions in a graphical and symbolic form. The second method, based on the spreading activation algorithm, aims at finding significant correlations between the simulation results and its various internal parameters, settings, events and entities. We illustrate our methods in the context of the EDA project A-0938-RT-GC EUSAS, where they are to be used after validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preparing databases for network traffic monitoring Name service redundancy in robot technology middleware Classification of LHC beam loss spikes using Support Vector Machines Extraction of web discussion texts for opinion analysis MonAMI platform, trials and results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1