从社会和行为科学论文中提取和评估统计信息

Sree Sai Teja Lanka, S. Rajtmajer, Jian Wu, C. Lee Giles
{"title":"从社会和行为科学论文中提取和评估统计信息","authors":"Sree Sai Teja Lanka, S. Rajtmajer, Jian Wu, C. Lee Giles","doi":"10.1145/3442442.3451363","DOIUrl":null,"url":null,"abstract":"With substantial and continuing increases in the number of published papers across the scientific literature, development of reliable approaches for automated discovery and assessment of published findings is increasingly urgent. Tools which can extract critical information from scientific papers and metadata can support representation and reasoning over existing findings, and offer insights into replicability, robustness and generalizability of specific claims. In this work, we present a pipeline for the extraction of statistical information (p-values, sample size, number of hypotheses tested) from full-text scientific documents. We validate our approach on 300 papers selected from the social and behavioral science literatures, and suggest directions for next steps.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Extraction and Evaluation of Statistical Information from Social and Behavioral Science Papers\",\"authors\":\"Sree Sai Teja Lanka, S. Rajtmajer, Jian Wu, C. Lee Giles\",\"doi\":\"10.1145/3442442.3451363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With substantial and continuing increases in the number of published papers across the scientific literature, development of reliable approaches for automated discovery and assessment of published findings is increasingly urgent. Tools which can extract critical information from scientific papers and metadata can support representation and reasoning over existing findings, and offer insights into replicability, robustness and generalizability of specific claims. In this work, we present a pipeline for the extraction of statistical information (p-values, sample size, number of hypotheses tested) from full-text scientific documents. We validate our approach on 300 papers selected from the social and behavioral science literatures, and suggest directions for next steps.\",\"PeriodicalId\":129420,\"journal\":{\"name\":\"Companion Proceedings of the Web Conference 2021\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442442.3451363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3451363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

随着科学文献中发表的论文数量的大量持续增加,开发可靠的方法来自动发现和评估已发表的发现变得越来越紧迫。可以从科学论文和元数据中提取关键信息的工具可以支持对现有发现的表示和推理,并提供对特定主张的可复制性、稳健性和概括性的见解。在这项工作中,我们提出了一个从全文科学文献中提取统计信息(p值,样本量,检验假设数量)的管道。我们从社会和行为科学文献中选择了300篇论文来验证我们的方法,并提出了下一步的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extraction and Evaluation of Statistical Information from Social and Behavioral Science Papers
With substantial and continuing increases in the number of published papers across the scientific literature, development of reliable approaches for automated discovery and assessment of published findings is increasingly urgent. Tools which can extract critical information from scientific papers and metadata can support representation and reasoning over existing findings, and offer insights into replicability, robustness and generalizability of specific claims. In this work, we present a pipeline for the extraction of statistical information (p-values, sample size, number of hypotheses tested) from full-text scientific documents. We validate our approach on 300 papers selected from the social and behavioral science literatures, and suggest directions for next steps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Do I Trust this Stranger? Generalized Trust and the Governance of Online Communities Explainable Demand Forecasting: A Data Mining Goldmine Tracing the Factoids: the Anatomy of Information Re-organization in Wikipedia Articles AI Principles in Identifying Toxicity in Online Conversation: Keynote at the Third Workshop on Fairness, Accountability, Transparency, Ethics and Society on the Web Fairness beyond “equal”: The Diversity Searcher as a Tool to Detect and Enhance the Representation of Socio-political Actors in News Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1