利用JMS-GM-PHD滤波器跟踪道路约束下的地面目标

Jihong Zheng, He He, Longteng Cong
{"title":"利用JMS-GM-PHD滤波器跟踪道路约束下的地面目标","authors":"Jihong Zheng, He He, Longteng Cong","doi":"10.1145/3457682.3457768","DOIUrl":null,"url":null,"abstract":"The probability hypothesis density filter with linear Gaussian jump Markov system multi-target models is an attractive approach to tracking multiple maneuvering targets in the presence of data association uncertainty, clutter, noise, and detection uncertainty. However, these models are not precise enough to describe moving targets on road networks in ground target tracking scenario. In this paper, the road map information is integrated into the jump Markov system Gaussian mixture probability hypothesis density (JMS-GM-PHD) filter, and a road-constraint JMS-GM-PHD filter for ground target tracking is proposed. In addition, we then derive the recursive equation of the proposed filter. Simulation results show that the proposed road-constrained JMS-GM-PHD filter is effective in tracking ground moving targets.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tracking Ground Targets with Road Constraints Using a JMS-GM-PHD Filter\",\"authors\":\"Jihong Zheng, He He, Longteng Cong\",\"doi\":\"10.1145/3457682.3457768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The probability hypothesis density filter with linear Gaussian jump Markov system multi-target models is an attractive approach to tracking multiple maneuvering targets in the presence of data association uncertainty, clutter, noise, and detection uncertainty. However, these models are not precise enough to describe moving targets on road networks in ground target tracking scenario. In this paper, the road map information is integrated into the jump Markov system Gaussian mixture probability hypothesis density (JMS-GM-PHD) filter, and a road-constraint JMS-GM-PHD filter for ground target tracking is proposed. In addition, we then derive the recursive equation of the proposed filter. Simulation results show that the proposed road-constrained JMS-GM-PHD filter is effective in tracking ground moving targets.\",\"PeriodicalId\":142045,\"journal\":{\"name\":\"2021 13th International Conference on Machine Learning and Computing\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457682.3457768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

线性高斯跳变马尔可夫系统多目标模型的概率假设密度滤波是在存在数据关联不确定性、杂波、噪声和检测不确定性的情况下跟踪多个机动目标的有效方法。然而,在地面目标跟踪场景中,这些模型对道路网络上运动目标的描述不够精确。本文将道路地图信息集成到跳跃马尔可夫系统高斯混合概率假设密度(JMS-GM-PHD)滤波器中,提出了一种道路约束的JMS-GM-PHD滤波器用于地面目标跟踪。此外,我们还推导了该滤波器的递推方程。仿真结果表明,所提出的道路约束JMS-GM-PHD滤波器能够有效地跟踪地面运动目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking Ground Targets with Road Constraints Using a JMS-GM-PHD Filter
The probability hypothesis density filter with linear Gaussian jump Markov system multi-target models is an attractive approach to tracking multiple maneuvering targets in the presence of data association uncertainty, clutter, noise, and detection uncertainty. However, these models are not precise enough to describe moving targets on road networks in ground target tracking scenario. In this paper, the road map information is integrated into the jump Markov system Gaussian mixture probability hypothesis density (JMS-GM-PHD) filter, and a road-constraint JMS-GM-PHD filter for ground target tracking is proposed. In addition, we then derive the recursive equation of the proposed filter. Simulation results show that the proposed road-constrained JMS-GM-PHD filter is effective in tracking ground moving targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corpus Construction and Entity Recognition for the Field of Industrial Robot Fault Diagnosis GCN2-NAA: Two-stage Graph Convolutional Networks with Node-Aware Attention for Joint Entity and Relation Extraction A Practical Indoor and Outdoor Seamless Navigation System Based on Electronic Map and Geomagnetism SC-DGCN: Sentiment Classification Based on Densely Connected Graph Convolutional Network Bird Songs Recognition Based on Ensemble Extreme Learning Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1