{"title":"矩阵-向量乘法的电荷模式并行架构","authors":"Roman Genov, Gert Cauwenberghs","doi":"10.1109/MWSCAS.2000.951694","DOIUrl":null,"url":null,"abstract":"An internally analog, externally digital architecture for matrix-vector multiplication is presented. Fully parallel processing allows for high data throughput and minimal latency. The analog architecture incorporates an array of charge-mode analog computational cells with dynamic storage and row-parallel flash analog-to-digital converters (ADC). Each of the cells includes a dynamic storage element and a charge injection device computing binary inner product of two arguments. The matrix elements are stored in the array of computational cells in bit-parallel fashion, and the input vector is presented bit-serially. Digital post-processing is then performed on the ADC outputs to construct the resulting product with precision higher than that of each conversion. The analog architecture is tailored for high-density and low power VLSI implementation, and matrix dimensions of 128/spl times/512 and ADC resolution of 6 bits for an overall resolution in excess of 8 bits are feasible on a 3 mm/spl times/3 mm chip in standard CMOS 0.5 /spl mu/m technology.","PeriodicalId":437349,"journal":{"name":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Charge-mode parallel architecture for matrix-vector multiplication\",\"authors\":\"Roman Genov, Gert Cauwenberghs\",\"doi\":\"10.1109/MWSCAS.2000.951694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An internally analog, externally digital architecture for matrix-vector multiplication is presented. Fully parallel processing allows for high data throughput and minimal latency. The analog architecture incorporates an array of charge-mode analog computational cells with dynamic storage and row-parallel flash analog-to-digital converters (ADC). Each of the cells includes a dynamic storage element and a charge injection device computing binary inner product of two arguments. The matrix elements are stored in the array of computational cells in bit-parallel fashion, and the input vector is presented bit-serially. Digital post-processing is then performed on the ADC outputs to construct the resulting product with precision higher than that of each conversion. The analog architecture is tailored for high-density and low power VLSI implementation, and matrix dimensions of 128/spl times/512 and ADC resolution of 6 bits for an overall resolution in excess of 8 bits are feasible on a 3 mm/spl times/3 mm chip in standard CMOS 0.5 /spl mu/m technology.\",\"PeriodicalId\":437349,\"journal\":{\"name\":\"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2000.951694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2000.951694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Charge-mode parallel architecture for matrix-vector multiplication
An internally analog, externally digital architecture for matrix-vector multiplication is presented. Fully parallel processing allows for high data throughput and minimal latency. The analog architecture incorporates an array of charge-mode analog computational cells with dynamic storage and row-parallel flash analog-to-digital converters (ADC). Each of the cells includes a dynamic storage element and a charge injection device computing binary inner product of two arguments. The matrix elements are stored in the array of computational cells in bit-parallel fashion, and the input vector is presented bit-serially. Digital post-processing is then performed on the ADC outputs to construct the resulting product with precision higher than that of each conversion. The analog architecture is tailored for high-density and low power VLSI implementation, and matrix dimensions of 128/spl times/512 and ADC resolution of 6 bits for an overall resolution in excess of 8 bits are feasible on a 3 mm/spl times/3 mm chip in standard CMOS 0.5 /spl mu/m technology.