喜欢还是选择?发电机构和电力公司共同应对性别偏见

Maja Stahl, Maximilian Spliethöver, Henning Wachsmuth
{"title":"喜欢还是选择?发电机构和电力公司共同应对性别偏见","authors":"Maja Stahl, Maximilian Spliethöver, Henning Wachsmuth","doi":"10.18653/v1/2022.nlpcss-1.6","DOIUrl":null,"url":null,"abstract":"Gender bias may emerge from an unequal representation of agency and power, for example, by portraying women frequently as passive and powerless (“She accepted her future”) and men as proactive and powerful (“He chose his future”). When language models learn from respective texts, they may reproduce or even amplify the bias. An effective way to mitigate bias is to generate counterfactual sentences with opposite agency and power to the training. Recent work targeted agency-specific verbs from a lexicon to this end. We argue that this is insufficient, due to the interaction of agency and power and their dependence on context. In this paper, we thus develop a new rewriting model that identifies verbs with the desired agency and power in the context of the given sentence. The verbs’ probability is then boosted to encourage the model to rewrite both connotations jointly. According to automatic metrics, our model effectively controls for power while being competitive in agency to the state of the art. In our main evaluation, human annotators favored its counterfactuals in terms of both connotations, also deeming its meaning preservation better.","PeriodicalId":438120,"journal":{"name":"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"To Prefer or to Choose? Generating Agency and Power Counterfactuals Jointly for Gender Bias Mitigation\",\"authors\":\"Maja Stahl, Maximilian Spliethöver, Henning Wachsmuth\",\"doi\":\"10.18653/v1/2022.nlpcss-1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gender bias may emerge from an unequal representation of agency and power, for example, by portraying women frequently as passive and powerless (“She accepted her future”) and men as proactive and powerful (“He chose his future”). When language models learn from respective texts, they may reproduce or even amplify the bias. An effective way to mitigate bias is to generate counterfactual sentences with opposite agency and power to the training. Recent work targeted agency-specific verbs from a lexicon to this end. We argue that this is insufficient, due to the interaction of agency and power and their dependence on context. In this paper, we thus develop a new rewriting model that identifies verbs with the desired agency and power in the context of the given sentence. The verbs’ probability is then boosted to encourage the model to rewrite both connotations jointly. According to automatic metrics, our model effectively controls for power while being competitive in agency to the state of the art. In our main evaluation, human annotators favored its counterfactuals in terms of both connotations, also deeming its meaning preservation better.\",\"PeriodicalId\":438120,\"journal\":{\"name\":\"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.nlpcss-1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.nlpcss-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

性别偏见可能来自机构和权力的不平等代表,例如,经常将妇女描绘成被动和无能为力(“她接受了她的未来”),而将男子描绘成主动和强大(“他选择了他的未来”)。当语言模型从各自的文本中学习时,它们可能会复制甚至放大这种偏见。一种有效的减轻偏见的方法是生成与训练相反的代理和权力的反事实句。最近的工作是针对特定于机构的动词从一个词典中实现这一目的。我们认为这是不够的,因为代理和权力的相互作用以及它们对语境的依赖。因此,在本文中,我们开发了一种新的重写模型,该模型可以在给定句子的上下文中识别具有所需代理和权力的动词。然后提高动词的概率,以鼓励模型共同重写两个含义。根据自动度量,我们的模型有效地控制了权力,同时在代理方面具有竞争力。在我们的主要评估中,人类注释者在两种内涵方面都倾向于它的反事实,也认为它的意义保存得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
To Prefer or to Choose? Generating Agency and Power Counterfactuals Jointly for Gender Bias Mitigation
Gender bias may emerge from an unequal representation of agency and power, for example, by portraying women frequently as passive and powerless (“She accepted her future”) and men as proactive and powerful (“He chose his future”). When language models learn from respective texts, they may reproduce or even amplify the bias. An effective way to mitigate bias is to generate counterfactual sentences with opposite agency and power to the training. Recent work targeted agency-specific verbs from a lexicon to this end. We argue that this is insufficient, due to the interaction of agency and power and their dependence on context. In this paper, we thus develop a new rewriting model that identifies verbs with the desired agency and power in the context of the given sentence. The verbs’ probability is then boosted to encourage the model to rewrite both connotations jointly. According to automatic metrics, our model effectively controls for power while being competitive in agency to the state of the art. In our main evaluation, human annotators favored its counterfactuals in terms of both connotations, also deeming its meaning preservation better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OLALA: Object-Level Active Learning for Efficient Document Layout Annotation Conspiracy Narratives in the Protest Movement Against COVID-19 Restrictions in Germany. A Long-term Content Analysis of Telegram Chat Groups. An Analysis of Acknowledgments in NLP Conference Proceedings Detecting Dissonant Stance in Social Media: The Role of Topic Exposure To Prefer or to Choose? Generating Agency and Power Counterfactuals Jointly for Gender Bias Mitigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1