基于自举方法的文本情感自动标注

Lea Canales, C. Strapparava, E. Boldrini, P. Martínez-Barco
{"title":"基于自举方法的文本情感自动标注","authors":"Lea Canales, C. Strapparava, E. Boldrini, P. Martínez-Barco","doi":"10.1109/DSAA.2016.78","DOIUrl":null,"url":null,"abstract":"The objective of this research is to develop a technique to automatically annotate emotional corpora. The complexity of automatic annotation of emotional corpora still presents numerous challenges and thus there is a need to develop a technique that allow us to tackle the annotation task. The relevance of this research is demonstrated by the fact that people's emotions and the patterns of these emotions provide a great value for business, individuals, society or politics. Hence, the creation of a robust emotion detection system becomes crucial. Due to the subjectivity of the emotions, the main challenge for the creation of emotional resources is the annotation process. Thus, with this staring point in mind, the objective of our paper is to illustrate an innovative and effective bootstrapping process for automatic annotations of emotional corpora. The evaluations carried out confirm the soundness of the proposed approach and allow us to consider the bootstrapping process as an appropriate approach to create resources such as an emotional corpus that can be employed on supervised machine learning towards the improvement of emotion detection systems.","PeriodicalId":193885,"journal":{"name":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","volume":"56 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Exploiting a Bootstrapping Approach for Automatic Annotation of Emotions in Texts\",\"authors\":\"Lea Canales, C. Strapparava, E. Boldrini, P. Martínez-Barco\",\"doi\":\"10.1109/DSAA.2016.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this research is to develop a technique to automatically annotate emotional corpora. The complexity of automatic annotation of emotional corpora still presents numerous challenges and thus there is a need to develop a technique that allow us to tackle the annotation task. The relevance of this research is demonstrated by the fact that people's emotions and the patterns of these emotions provide a great value for business, individuals, society or politics. Hence, the creation of a robust emotion detection system becomes crucial. Due to the subjectivity of the emotions, the main challenge for the creation of emotional resources is the annotation process. Thus, with this staring point in mind, the objective of our paper is to illustrate an innovative and effective bootstrapping process for automatic annotations of emotional corpora. The evaluations carried out confirm the soundness of the proposed approach and allow us to consider the bootstrapping process as an appropriate approach to create resources such as an emotional corpus that can be employed on supervised machine learning towards the improvement of emotion detection systems.\",\"PeriodicalId\":193885,\"journal\":{\"name\":\"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"56 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA.2016.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2016.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本研究的目的是开发一种自动标注情感语料库的技术。情感语料库自动标注的复杂性仍然存在许多挑战,因此需要开发一种能够解决标注任务的技术。人们的情绪和这些情绪的模式为商业、个人、社会或政治提供了巨大的价值,这一事实证明了这项研究的相关性。因此,创建一个强大的情感检测系统变得至关重要。由于情感的主观性,情感资源的创建面临的主要挑战是注释过程。因此,考虑到这个出发点,本文的目标是说明一种创新而有效的情感语料库自动注释的引导过程。所进行的评估确认了所提出方法的合理性,并允许我们将自举过程视为创建资源(如情感语料库)的适当方法,该资源可用于监督机器学习,以改进情感检测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting a Bootstrapping Approach for Automatic Annotation of Emotions in Texts
The objective of this research is to develop a technique to automatically annotate emotional corpora. The complexity of automatic annotation of emotional corpora still presents numerous challenges and thus there is a need to develop a technique that allow us to tackle the annotation task. The relevance of this research is demonstrated by the fact that people's emotions and the patterns of these emotions provide a great value for business, individuals, society or politics. Hence, the creation of a robust emotion detection system becomes crucial. Due to the subjectivity of the emotions, the main challenge for the creation of emotional resources is the annotation process. Thus, with this staring point in mind, the objective of our paper is to illustrate an innovative and effective bootstrapping process for automatic annotations of emotional corpora. The evaluations carried out confirm the soundness of the proposed approach and allow us to consider the bootstrapping process as an appropriate approach to create resources such as an emotional corpus that can be employed on supervised machine learning towards the improvement of emotion detection systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multi-Granularity Pattern-Based Sequence Classification Framework for Educational Data Task Composition in Crowdsourcing Maritime Pattern Extraction from AIS Data Using a Genetic Algorithm What Did I Do Wrong in My MOBA Game? Mining Patterns Discriminating Deviant Behaviours Nonparametric Adjoint-Based Inference for Stochastic Differential Equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1