高棉语自动语音识别的卷积时延神经网络

Nalin Srun, Sotheara Leang, Ye Kyaw Thu, Sethserey Sam
{"title":"高棉语自动语音识别的卷积时延神经网络","authors":"Nalin Srun, Sotheara Leang, Ye Kyaw Thu, Sethserey Sam","doi":"10.1109/iSAI-NLP56921.2022.9960286","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks have been proven to successfully capture spatial aspects of the speech signal and eliminate spectral variations across speakers for Automatic Speech Recognition. In this study, we investigate the Convolutional Neural Net-work with Time Delay Neural Network for an acoustic model to deal with large vocabulary continuous speech recognition for Khmer. Our idea is to use Convolutional Neural Networks to extract local features of the speech signal, whereas Time Delay Neural Networks capture long temporal correlations between acoustic events. The experimental results show that the suggested net-work outperforms the Time Delay Neural Network and achieves an average relative improvement of 14% across test sets.","PeriodicalId":399019,"journal":{"name":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional Time Delay Neural Network for Khmer Automatic Speech Recognition\",\"authors\":\"Nalin Srun, Sotheara Leang, Ye Kyaw Thu, Sethserey Sam\",\"doi\":\"10.1109/iSAI-NLP56921.2022.9960286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks have been proven to successfully capture spatial aspects of the speech signal and eliminate spectral variations across speakers for Automatic Speech Recognition. In this study, we investigate the Convolutional Neural Net-work with Time Delay Neural Network for an acoustic model to deal with large vocabulary continuous speech recognition for Khmer. Our idea is to use Convolutional Neural Networks to extract local features of the speech signal, whereas Time Delay Neural Networks capture long temporal correlations between acoustic events. The experimental results show that the suggested net-work outperforms the Time Delay Neural Network and achieves an average relative improvement of 14% across test sets.\",\"PeriodicalId\":399019,\"journal\":{\"name\":\"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSAI-NLP56921.2022.9960286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP56921.2022.9960286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络已被证明可以成功捕获语音信号的空间方面,并消除自动语音识别中说话人之间的频谱变化。在这项研究中,我们研究了卷积神经网络与时延神经网络相结合的声学模型来处理高棉语的大词汇量连续语音识别。我们的想法是使用卷积神经网络提取语音信号的局部特征,而时间延迟神经网络捕获声学事件之间的长时间相关性。实验结果表明,该网络优于时滞神经网络,在测试集上的平均相对改进率为14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convolutional Time Delay Neural Network for Khmer Automatic Speech Recognition
Convolutional Neural Networks have been proven to successfully capture spatial aspects of the speech signal and eliminate spectral variations across speakers for Automatic Speech Recognition. In this study, we investigate the Convolutional Neural Net-work with Time Delay Neural Network for an acoustic model to deal with large vocabulary continuous speech recognition for Khmer. Our idea is to use Convolutional Neural Networks to extract local features of the speech signal, whereas Time Delay Neural Networks capture long temporal correlations between acoustic events. The experimental results show that the suggested net-work outperforms the Time Delay Neural Network and achieves an average relative improvement of 14% across test sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Evaluation of Interviewer's Presentation Styles for Interview Practice with a Communicative Robot An Analysis of Acoustic Features for Attention Score in Thai MoCA Assessment Convolutional Time Delay Neural Network for Khmer Automatic Speech Recognition ThEconSum: an Economics-domained Dataset for Thai Text Summarization and Baseline Models Using the MQTT Broker as a Speech-Activated Medium to Control the Operation of Devices in the Smart Office
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1