基于关联反馈技术的图像检索系统语义缺口缩小

A. Saju, I. Mary, A. Vasuki, P. S. Lakshmi
{"title":"基于关联反馈技术的图像检索系统语义缺口缩小","authors":"A. Saju, I. Mary, A. Vasuki, P. S. Lakshmi","doi":"10.1109/ICADIWT.2014.6814677","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel content based image retrieval system incorporating the relevance feedback technique. In order to improve the retrieval accuracy of content based image retrieval systems, research focus has been shifted in reducing the semantic gap between visual features and the human semantics. The five major techniques available to narrow down the semantic gap are: (a) Object ontology (b) machine learning (c) relevance feedback (d) semantic template (e) web image retrieval. This paper focuses on the relevance feedback technique by which semantic gap can be reduced in order to improve the retrieval efficiency of the system. The major challenges facing the existing relevance feedback technique is the number of iterations and the execution time. The proposed algorithm provides a better solution to overcome both these challenges. The efficiency of the system can be calculated based on precision and recall.","PeriodicalId":339627,"journal":{"name":"The Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014)","volume":"55 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Reduction of semantic gap using relevance feedback technique in image retrieval system\",\"authors\":\"A. Saju, I. Mary, A. Vasuki, P. S. Lakshmi\",\"doi\":\"10.1109/ICADIWT.2014.6814677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel content based image retrieval system incorporating the relevance feedback technique. In order to improve the retrieval accuracy of content based image retrieval systems, research focus has been shifted in reducing the semantic gap between visual features and the human semantics. The five major techniques available to narrow down the semantic gap are: (a) Object ontology (b) machine learning (c) relevance feedback (d) semantic template (e) web image retrieval. This paper focuses on the relevance feedback technique by which semantic gap can be reduced in order to improve the retrieval efficiency of the system. The major challenges facing the existing relevance feedback technique is the number of iterations and the execution time. The proposed algorithm provides a better solution to overcome both these challenges. The efficiency of the system can be calculated based on precision and recall.\",\"PeriodicalId\":339627,\"journal\":{\"name\":\"The Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014)\",\"volume\":\"55 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICADIWT.2014.6814677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICADIWT.2014.6814677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种结合相关反馈技术的基于内容的图像检索系统。为了提高基于内容的图像检索系统的检索精度,减少视觉特征与人类语义之间的语义差距已经成为研究的重点。可用于缩小语义差距的五种主要技术是:(a)对象本体(b)机器学习(c)相关反馈(d)语义模板(e) web图像检索。本文重点研究了相关反馈技术,该技术可以减小语义间隙,从而提高系统的检索效率。现有相关反馈技术面临的主要挑战是迭代次数和执行时间。该算法为克服这两个挑战提供了更好的解决方案。系统的效率可以根据查准率和查全率来计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduction of semantic gap using relevance feedback technique in image retrieval system
This paper proposes a novel content based image retrieval system incorporating the relevance feedback technique. In order to improve the retrieval accuracy of content based image retrieval systems, research focus has been shifted in reducing the semantic gap between visual features and the human semantics. The five major techniques available to narrow down the semantic gap are: (a) Object ontology (b) machine learning (c) relevance feedback (d) semantic template (e) web image retrieval. This paper focuses on the relevance feedback technique by which semantic gap can be reduced in order to improve the retrieval efficiency of the system. The major challenges facing the existing relevance feedback technique is the number of iterations and the execution time. The proposed algorithm provides a better solution to overcome both these challenges. The efficiency of the system can be calculated based on precision and recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game theoretic resource allocation in cloud computing Automated colour segmentation of Tuberculosis bacteria thru region growing: A novel approach A multi-objective differential evolution approach for the question selection problem Formal representation of service interactions for SaaS based applications A novel approach for predicting the length of hospital stay with DBSCAN and supervised classification algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1