{"title":"热电发电机和光伏电池高级物理","authors":"S. Abdelhady","doi":"10.11648/J.AJPA.20180605.14","DOIUrl":null,"url":null,"abstract":"The measured efficiencies of modern photovoltaic solar cells that exceed the limit determined by Shockley and Queisser indicate a need for advanced physics to solve such conflict. Similarly, the duality confusion represents another conflict that acquires new physics. Such conflicts and confusions were recently solved by using an innovative definition of the nature of electric current as electromagnetic waves of electric potential. This definition was used to find also plausible physical explanation of the results of Tesla’s experiment of transmission of electric power in space and the success of Faraday in polarizing light by electric field in one of his experiments. Additionally, literature failed to find plausible physical explanation of estimating the electric potential of the output electric current from thermopiles and thermoelectric generators as the sum of electric potentials gained in crossing the junctions of these devices. It is shown in this paper that the introduced nature of electric current leads to advanced and plausible physical explanation of such results. It is shown also in this paper that the electric potential of the output electric current from multijunction photovoltaic cells can be estimated, similar to the thermopiles and TEG, as sum of electric potentials gained in crossing the junctions of these cells. Such similarity between the relations applied in estimating the gained potentials in all these multijunction-devices in addition to the relation found by Goldsmid and Sharp between the Seebeck coefficient and the energy bandgap prove that the Photovoltaic effect and the Seebeck effect corresponds simply to the same phenomenon. In other words; the gained potential in photovoltaic cells is generated by the thermal potential of the incident radiation and the difference of the Seebeck coefficients of the materials of its junctions. Such advanced physics may represent a gateway to understand other phenomena in the nature.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Advanced Physics of Thermoelectric Generators and Photovoltaic Cells\",\"authors\":\"S. Abdelhady\",\"doi\":\"10.11648/J.AJPA.20180605.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The measured efficiencies of modern photovoltaic solar cells that exceed the limit determined by Shockley and Queisser indicate a need for advanced physics to solve such conflict. Similarly, the duality confusion represents another conflict that acquires new physics. Such conflicts and confusions were recently solved by using an innovative definition of the nature of electric current as electromagnetic waves of electric potential. This definition was used to find also plausible physical explanation of the results of Tesla’s experiment of transmission of electric power in space and the success of Faraday in polarizing light by electric field in one of his experiments. Additionally, literature failed to find plausible physical explanation of estimating the electric potential of the output electric current from thermopiles and thermoelectric generators as the sum of electric potentials gained in crossing the junctions of these devices. It is shown in this paper that the introduced nature of electric current leads to advanced and plausible physical explanation of such results. It is shown also in this paper that the electric potential of the output electric current from multijunction photovoltaic cells can be estimated, similar to the thermopiles and TEG, as sum of electric potentials gained in crossing the junctions of these cells. Such similarity between the relations applied in estimating the gained potentials in all these multijunction-devices in addition to the relation found by Goldsmid and Sharp between the Seebeck coefficient and the energy bandgap prove that the Photovoltaic effect and the Seebeck effect corresponds simply to the same phenomenon. In other words; the gained potential in photovoltaic cells is generated by the thermal potential of the incident radiation and the difference of the Seebeck coefficients of the materials of its junctions. Such advanced physics may represent a gateway to understand other phenomena in the nature.\",\"PeriodicalId\":329149,\"journal\":{\"name\":\"American Journal of Physics and Applications\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJPA.20180605.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20180605.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced Physics of Thermoelectric Generators and Photovoltaic Cells
The measured efficiencies of modern photovoltaic solar cells that exceed the limit determined by Shockley and Queisser indicate a need for advanced physics to solve such conflict. Similarly, the duality confusion represents another conflict that acquires new physics. Such conflicts and confusions were recently solved by using an innovative definition of the nature of electric current as electromagnetic waves of electric potential. This definition was used to find also plausible physical explanation of the results of Tesla’s experiment of transmission of electric power in space and the success of Faraday in polarizing light by electric field in one of his experiments. Additionally, literature failed to find plausible physical explanation of estimating the electric potential of the output electric current from thermopiles and thermoelectric generators as the sum of electric potentials gained in crossing the junctions of these devices. It is shown in this paper that the introduced nature of electric current leads to advanced and plausible physical explanation of such results. It is shown also in this paper that the electric potential of the output electric current from multijunction photovoltaic cells can be estimated, similar to the thermopiles and TEG, as sum of electric potentials gained in crossing the junctions of these cells. Such similarity between the relations applied in estimating the gained potentials in all these multijunction-devices in addition to the relation found by Goldsmid and Sharp between the Seebeck coefficient and the energy bandgap prove that the Photovoltaic effect and the Seebeck effect corresponds simply to the same phenomenon. In other words; the gained potential in photovoltaic cells is generated by the thermal potential of the incident radiation and the difference of the Seebeck coefficients of the materials of its junctions. Such advanced physics may represent a gateway to understand other phenomena in the nature.