利用理论指导的数据科学将退化过程的基础知识集成到数据驱动的诊断和预测中

Simon Hagmeyer, P. Zeiler, Marco F. Huber
{"title":"利用理论指导的数据科学将退化过程的基础知识集成到数据驱动的诊断和预测中","authors":"Simon Hagmeyer, P. Zeiler, Marco F. Huber","doi":"10.36001/phme.2022.v7i1.3352","DOIUrl":null,"url":null,"abstract":"In Prognostics and Health Management, there are three main approaches for implementing diagnostic and prognostic applications. These approaches are data-driven methods, physical model-based methods, and combinations of them, in the form of hybrid methods. Each of them has specific advantages but also limitations for their purposeful implementation. In the case of data-driven methods, one of the main limitations is the availability of sufficient training data that adequately cover the relevant state space. For model-based methods, on the other hand, it is often the case that the degradation process of the considered technical system is of significant complexity. In such a scenario physics-based modeling requires great effort or is not possible at all. Combinations of data-driven and model-based approaches in form of hybrid approaches offer the possibility to partially mitigate the shortcomings of the other two approaches, however, require a sufficiently detailed data-driven and physics-based model.\nThis paper addresses the transitional field between data-driven and hybrid approaches. Despite the issues of formulating a physics-based model that provides a representation of the degradation process, basic knowledge of the considered system and of the laws governing its degradation process is usually available. Integration of such knowledge into a machine learning process is part of a research field that is either called theory-guided data science, (physics) informed machine learning, physics-based learning or physics guided machine learning. First, the state of research in Prognostics and Health Management on methods of this field is presented and existing research gaps are outlined. Then, a concept is introduced for incorporating fundamental knowledge, such as monotonicity constraints, into data-driven diagnostic and prognostic applications using approaches from theory-guided data science. A special aspect of this concept is its cross-application usability through the consideration of knowledge that repeatedly occurs in diagnostics and prognostics. This is, for example, knowledge about physically justified boundaries whose compliance makes a prediction of the data-driven model plausible in the first place.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"244 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the Integration of Fundamental Knowledge about Degradation Processes into Data-Driven Diagnostics and Prognostics Using Theory-Guided Data Science\",\"authors\":\"Simon Hagmeyer, P. Zeiler, Marco F. Huber\",\"doi\":\"10.36001/phme.2022.v7i1.3352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Prognostics and Health Management, there are three main approaches for implementing diagnostic and prognostic applications. These approaches are data-driven methods, physical model-based methods, and combinations of them, in the form of hybrid methods. Each of them has specific advantages but also limitations for their purposeful implementation. In the case of data-driven methods, one of the main limitations is the availability of sufficient training data that adequately cover the relevant state space. For model-based methods, on the other hand, it is often the case that the degradation process of the considered technical system is of significant complexity. In such a scenario physics-based modeling requires great effort or is not possible at all. Combinations of data-driven and model-based approaches in form of hybrid approaches offer the possibility to partially mitigate the shortcomings of the other two approaches, however, require a sufficiently detailed data-driven and physics-based model.\\nThis paper addresses the transitional field between data-driven and hybrid approaches. Despite the issues of formulating a physics-based model that provides a representation of the degradation process, basic knowledge of the considered system and of the laws governing its degradation process is usually available. Integration of such knowledge into a machine learning process is part of a research field that is either called theory-guided data science, (physics) informed machine learning, physics-based learning or physics guided machine learning. First, the state of research in Prognostics and Health Management on methods of this field is presented and existing research gaps are outlined. Then, a concept is introduced for incorporating fundamental knowledge, such as monotonicity constraints, into data-driven diagnostic and prognostic applications using approaches from theory-guided data science. A special aspect of this concept is its cross-application usability through the consideration of knowledge that repeatedly occurs in diagnostics and prognostics. This is, for example, knowledge about physically justified boundaries whose compliance makes a prediction of the data-driven model plausible in the first place.\",\"PeriodicalId\":422825,\"journal\":{\"name\":\"PHM Society European Conference\",\"volume\":\"244 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHM Society European Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/phme.2022.v7i1.3352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在预后和健康管理中,有三种实现诊断和预后应用的主要方法。这些方法是数据驱动的方法,基于物理模型的方法,以及以混合方法的形式将它们组合在一起。它们中的每一个都有特定的优点,但对于它们的有目的的实现也有限制。在数据驱动的方法中,主要的限制之一是缺乏足够的训练数据来充分覆盖相关的状态空间。另一方面,对于基于模型的方法,通常情况下所考虑的技术系统的退化过程非常复杂。在这种情况下,基于物理的建模需要很大的努力,或者根本不可能。以混合方法的形式将数据驱动和基于模型的方法结合起来,可以部分地减轻其他两种方法的缺点,但是,需要一个足够详细的数据驱动和基于物理的模型。本文讨论了数据驱动和混合方法之间的过渡领域。尽管制定一个基于物理的模型来提供退化过程的表示存在问题,但是所考虑的系统的基本知识和控制其降解过程的规律通常是可用的。将这些知识集成到机器学习过程中是一个研究领域的一部分,该领域被称为理论指导数据科学、(物理)知情机器学习、基于物理的学习或物理指导机器学习。首先,介绍了预后与健康管理在该领域的研究现状和方法,并概述了现有的研究差距。然后,介绍了一个概念,将单调性约束等基础知识结合到数据驱动的诊断和预测应用中,使用理论指导的数据科学方法。这个概念的一个特殊方面是它的跨应用的可用性,通过考虑在诊断和预测中反复出现的知识。例如,这是关于物理上合理的边界的知识,其遵从性首先使数据驱动模型的预测变得合理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Integration of Fundamental Knowledge about Degradation Processes into Data-Driven Diagnostics and Prognostics Using Theory-Guided Data Science
In Prognostics and Health Management, there are three main approaches for implementing diagnostic and prognostic applications. These approaches are data-driven methods, physical model-based methods, and combinations of them, in the form of hybrid methods. Each of them has specific advantages but also limitations for their purposeful implementation. In the case of data-driven methods, one of the main limitations is the availability of sufficient training data that adequately cover the relevant state space. For model-based methods, on the other hand, it is often the case that the degradation process of the considered technical system is of significant complexity. In such a scenario physics-based modeling requires great effort or is not possible at all. Combinations of data-driven and model-based approaches in form of hybrid approaches offer the possibility to partially mitigate the shortcomings of the other two approaches, however, require a sufficiently detailed data-driven and physics-based model. This paper addresses the transitional field between data-driven and hybrid approaches. Despite the issues of formulating a physics-based model that provides a representation of the degradation process, basic knowledge of the considered system and of the laws governing its degradation process is usually available. Integration of such knowledge into a machine learning process is part of a research field that is either called theory-guided data science, (physics) informed machine learning, physics-based learning or physics guided machine learning. First, the state of research in Prognostics and Health Management on methods of this field is presented and existing research gaps are outlined. Then, a concept is introduced for incorporating fundamental knowledge, such as monotonicity constraints, into data-driven diagnostic and prognostic applications using approaches from theory-guided data science. A special aspect of this concept is its cross-application usability through the consideration of knowledge that repeatedly occurs in diagnostics and prognostics. This is, for example, knowledge about physically justified boundaries whose compliance makes a prediction of the data-driven model plausible in the first place.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Certainty Groups: A Practical Approach to Distinguish Confidence Levels in Neural Networks Domain Knowledge Informed Unsupervised Fault Detection for Rolling Element Bearings Novel Methodology for Health Assessment in Printed Circuit Boards On the Integration of Fundamental Knowledge about Degradation Processes into Data-Driven Diagnostics and Prognostics Using Theory-Guided Data Science Long Horizon Anomaly Prediction in Multivariate Time Series with Causal Autoencoders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1