基于开放数据环境因素的机械通气数据驱动控制

H. Hsu, Chen-Yu Pan
{"title":"基于开放数据环境因素的机械通气数据驱动控制","authors":"H. Hsu, Chen-Yu Pan","doi":"10.1109/ICASI57738.2023.10179512","DOIUrl":null,"url":null,"abstract":"Indoor air quality reduces pollutants through different ventilation methods. Using different ventilation strategies is the focus of most scholars with limited resources. Therefore, we use outdoor environmental factors to data-driven control mechanical ventilation facilities.This proposed framework also optimizes the deep learning model (LSTM) through clustering analysis, and through cross-validation, the accuracy of the model is 97.45%. At the same time, this model can reduce energy consumption by 53%.","PeriodicalId":281254,"journal":{"name":"2023 9th International Conference on Applied System Innovation (ICASI)","volume":"606 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors\",\"authors\":\"H. Hsu, Chen-Yu Pan\",\"doi\":\"10.1109/ICASI57738.2023.10179512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor air quality reduces pollutants through different ventilation methods. Using different ventilation strategies is the focus of most scholars with limited resources. Therefore, we use outdoor environmental factors to data-driven control mechanical ventilation facilities.This proposed framework also optimizes the deep learning model (LSTM) through clustering analysis, and through cross-validation, the accuracy of the model is 97.45%. At the same time, this model can reduce energy consumption by 53%.\",\"PeriodicalId\":281254,\"journal\":{\"name\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"volume\":\"606 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASI57738.2023.10179512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI57738.2023.10179512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

室内空气质量通过不同的通风方式减少污染物。在资源有限的情况下,采用不同的通气策略是大多数学者关注的焦点。因此,我们利用室外环境因素对机械通风设施进行数据驱动控制。本文提出的框架还通过聚类分析对深度学习模型(LSTM)进行了优化,通过交叉验证,模型的准确率为97.45%。同时,该机型可降低53%的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors
Indoor air quality reduces pollutants through different ventilation methods. Using different ventilation strategies is the focus of most scholars with limited resources. Therefore, we use outdoor environmental factors to data-driven control mechanical ventilation facilities.This proposed framework also optimizes the deep learning model (LSTM) through clustering analysis, and through cross-validation, the accuracy of the model is 97.45%. At the same time, this model can reduce energy consumption by 53%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Detection of Disinformation Based on Chronological and Spatial Topologies Cluster based Indexing for Spatial Analysis on Read-only Database Straight-line Generation Approach using Deep Learning for Mobile Robot Guidance in Lettuce Fields Leveraging the Objective Intelligibility and Noise Estimation to Improve Conformer-Based MetricGAN Analysis of Eye-tracking System Based on Diffractive Waveguide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1