一般城市辐射交换的简化辐射度算法

D. Robinson, Andrew Stone
{"title":"一般城市辐射交换的简化辐射度算法","authors":"D. Robinson, Andrew Stone","doi":"10.1191/0143624405bt133oa","DOIUrl":null,"url":null,"abstract":"The radiant external environment may be described by two hemispheres, above and below the horizontal plane, which are discretized into a number of patches of known solid angle. Occlusions to these patches may be combined and represented as some patch fraction for which the radiant characteristics are defined by the dominant occlusion. By solving for radiant exchanges between each surface in a scene and its associated (un)occluded patches, we have a simplified radiosity algorithm (SRA). This paper describes the application of this SRA to solve for urban scale predictions of: (i) solar radiation; (ii) interior daylight; and (iii) longwave radiation. Comparisons of solar and daylight predictions with the ray-tracing program RADIANCE show that accurate results are achieved at a computational cost several orders of magnitude lower. Practical application: This paper describes a new model for predicting external irradiance (shortwave and longwave) and internal illuminance in an accurate and very efficient way, in a single computational module. This module may be incorporated into existing software to improve the quality of predictions from single building thermal simulations as well as emerging software for urban scale predictions of integrated resource (energy, water, waste) flows, for which the model was developed.","PeriodicalId":272488,"journal":{"name":"Building Services Engineering Research and Technology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"A simplified radiosity algorithm for general urban radiation exchange\",\"authors\":\"D. Robinson, Andrew Stone\",\"doi\":\"10.1191/0143624405bt133oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The radiant external environment may be described by two hemispheres, above and below the horizontal plane, which are discretized into a number of patches of known solid angle. Occlusions to these patches may be combined and represented as some patch fraction for which the radiant characteristics are defined by the dominant occlusion. By solving for radiant exchanges between each surface in a scene and its associated (un)occluded patches, we have a simplified radiosity algorithm (SRA). This paper describes the application of this SRA to solve for urban scale predictions of: (i) solar radiation; (ii) interior daylight; and (iii) longwave radiation. Comparisons of solar and daylight predictions with the ray-tracing program RADIANCE show that accurate results are achieved at a computational cost several orders of magnitude lower. Practical application: This paper describes a new model for predicting external irradiance (shortwave and longwave) and internal illuminance in an accurate and very efficient way, in a single computational module. This module may be incorporated into existing software to improve the quality of predictions from single building thermal simulations as well as emerging software for urban scale predictions of integrated resource (energy, water, waste) flows, for which the model was developed.\",\"PeriodicalId\":272488,\"journal\":{\"name\":\"Building Services Engineering Research and Technology\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Services Engineering Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/0143624405bt133oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Services Engineering Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/0143624405bt133oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

辐射外部环境可以用水平面上下两个半球来描述,这两个半球被离散成许多已知立体角的块。这些斑块的遮挡可以组合在一起,并表示为一些斑块分数,其中辐射特征由优势遮挡定义。通过求解场景中每个表面及其相关(未)遮挡斑块之间的辐射交换,我们得到了一个简化的辐射度算法(SRA)。本文描述了该SRA在解决城市尺度预测中的应用:(i)太阳辐射;(ii)室内日光;(三)长波辐射。太阳和日光预测与光线追踪程序RADIANCE的比较表明,以低几个数量级的计算成本获得了准确的结果。实际应用:本文描述了一种新的模型,可以在单个计算模块中准确而高效地预测外部辐照度(短波和长波)和内部照度。该模块可以整合到现有的软件中,以提高单个建筑热模拟的预测质量,以及用于城市规模综合资源(能源,水,废物)流预测的新兴软件,该模型就是为此开发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simplified radiosity algorithm for general urban radiation exchange
The radiant external environment may be described by two hemispheres, above and below the horizontal plane, which are discretized into a number of patches of known solid angle. Occlusions to these patches may be combined and represented as some patch fraction for which the radiant characteristics are defined by the dominant occlusion. By solving for radiant exchanges between each surface in a scene and its associated (un)occluded patches, we have a simplified radiosity algorithm (SRA). This paper describes the application of this SRA to solve for urban scale predictions of: (i) solar radiation; (ii) interior daylight; and (iii) longwave radiation. Comparisons of solar and daylight predictions with the ray-tracing program RADIANCE show that accurate results are achieved at a computational cost several orders of magnitude lower. Practical application: This paper describes a new model for predicting external irradiance (shortwave and longwave) and internal illuminance in an accurate and very efficient way, in a single computational module. This module may be incorporated into existing software to improve the quality of predictions from single building thermal simulations as well as emerging software for urban scale predictions of integrated resource (energy, water, waste) flows, for which the model was developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real coded genetic algorithm in operational optimization of a district cooling system: An inceptive applicability assessment and power saving evaluation Producing domestic energy benchmarks using a large disaggregate stock model An indoor airflow distribution predictor using machine learning for a real-time healthy building monitoring system in the tropics Producing domestic energy benchmarks using a large disaggregate stock model An indoor airflow distribution predictor using machine learning for a real-time healthy building monitoring system in the tropics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1