链接个人身份信息从暗网到表面网:一种深度实体解析方法

Fangyu Lin, Yizhi Liu, Mohammadreza Ebrahimi, Zara Ahmad-Post, J. Hu, Jingyu Xin, S. Samtani, Weifeng Li, Hsinchun Chen
{"title":"链接个人身份信息从暗网到表面网:一种深度实体解析方法","authors":"Fangyu Lin, Yizhi Liu, Mohammadreza Ebrahimi, Zara Ahmad-Post, J. Hu, Jingyu Xin, S. Samtani, Weifeng Li, Hsinchun Chen","doi":"10.1109/ICDMW51313.2020.00072","DOIUrl":null,"url":null,"abstract":"The information privacy of the Internet users has become a major societal concern. The rapid growth of online services increases the risk of unauthorized access to Personally Identifiable Information (PII) of at-risk populations, who are unaware of their PII exposure. To proactively identify online at-risk populations and increase their privacy awareness, it is crucial to conduct a holistic privacy risk assessment across the internet. Current privacy risk assessment studies are limited to a single platform within either the surface web or the dark web. A comprehensive privacy risk assessment requires matching exposed PII on heterogeneous online platforms across the surface web and the dark web. However, due to the incompleteness and inaccuracy of PII records in each platform, linking the exposed PII to users is a non-trivial task. While Entity Resolution (ER) techniques can be used to facilitate this task, they often require ad-hoc, manual rule development and feature engineering. Recently, Deep Learning (DL)-based ER has outperformed manual entity matching rules by automatically extracting prominent features from incomplete or inaccurate records. In this study, we enhance the existing privacy risk assessment with a DL-based ER method, namely Multi-Context Attention (MCA), to comprehensively evaluate individuals' PII exposure across the different online platforms in the dark web and surface web. Evaluation against benchmark ER models indicates the efficacy of MCA. Using MCA on a random sample of data breach victims in the dark web, we are able to identify 4.3% of the victims on the surface web platforms and calculate their privacy risk scores.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Linking Personally Identifiable Information from the Dark Web to the Surface Web: A Deep Entity Resolution Approach\",\"authors\":\"Fangyu Lin, Yizhi Liu, Mohammadreza Ebrahimi, Zara Ahmad-Post, J. Hu, Jingyu Xin, S. Samtani, Weifeng Li, Hsinchun Chen\",\"doi\":\"10.1109/ICDMW51313.2020.00072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The information privacy of the Internet users has become a major societal concern. The rapid growth of online services increases the risk of unauthorized access to Personally Identifiable Information (PII) of at-risk populations, who are unaware of their PII exposure. To proactively identify online at-risk populations and increase their privacy awareness, it is crucial to conduct a holistic privacy risk assessment across the internet. Current privacy risk assessment studies are limited to a single platform within either the surface web or the dark web. A comprehensive privacy risk assessment requires matching exposed PII on heterogeneous online platforms across the surface web and the dark web. However, due to the incompleteness and inaccuracy of PII records in each platform, linking the exposed PII to users is a non-trivial task. While Entity Resolution (ER) techniques can be used to facilitate this task, they often require ad-hoc, manual rule development and feature engineering. Recently, Deep Learning (DL)-based ER has outperformed manual entity matching rules by automatically extracting prominent features from incomplete or inaccurate records. In this study, we enhance the existing privacy risk assessment with a DL-based ER method, namely Multi-Context Attention (MCA), to comprehensively evaluate individuals' PII exposure across the different online platforms in the dark web and surface web. Evaluation against benchmark ER models indicates the efficacy of MCA. Using MCA on a random sample of data breach victims in the dark web, we are able to identify 4.3% of the victims on the surface web platforms and calculate their privacy risk scores.\",\"PeriodicalId\":426846,\"journal\":{\"name\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW51313.2020.00072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

互联网用户的信息隐私已成为一个重大的社会问题。在线服务的快速增长增加了未经授权访问风险人群的个人身份信息(PII)的风险,这些人群不知道他们的PII暴露。为了主动识别上网风险人群并提高他们的隐私意识,在互联网上进行全面的隐私风险评估至关重要。目前的隐私风险评估研究仅限于表面网或暗网内的单一平台。全面的隐私风险评估需要在跨表层网和暗网的异构在线平台上匹配暴露的个人身份信息。然而,由于每个平台中PII记录的不完整性和不准确性,将暴露的PII链接到用户是一项艰巨的任务。虽然实体解析(ER)技术可用于促进此任务,但它们通常需要特别的、手动的规则开发和特征工程。最近,基于深度学习(DL)的ER通过自动从不完整或不准确的记录中提取突出特征来优于手动实体匹配规则。在本研究中,我们使用基于dl的ER方法,即多上下文注意(Multi-Context Attention, MCA),对现有的隐私风险评估进行了改进,以综合评估个人在暗网和表层网不同在线平台上的PII暴露情况。对基准ER模型的评价表明了MCA的有效性。通过对暗网数据泄露受害者的随机样本使用MCA,我们能够识别出表面网络平台上4.3%的受害者,并计算出他们的隐私风险评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linking Personally Identifiable Information from the Dark Web to the Surface Web: A Deep Entity Resolution Approach
The information privacy of the Internet users has become a major societal concern. The rapid growth of online services increases the risk of unauthorized access to Personally Identifiable Information (PII) of at-risk populations, who are unaware of their PII exposure. To proactively identify online at-risk populations and increase their privacy awareness, it is crucial to conduct a holistic privacy risk assessment across the internet. Current privacy risk assessment studies are limited to a single platform within either the surface web or the dark web. A comprehensive privacy risk assessment requires matching exposed PII on heterogeneous online platforms across the surface web and the dark web. However, due to the incompleteness and inaccuracy of PII records in each platform, linking the exposed PII to users is a non-trivial task. While Entity Resolution (ER) techniques can be used to facilitate this task, they often require ad-hoc, manual rule development and feature engineering. Recently, Deep Learning (DL)-based ER has outperformed manual entity matching rules by automatically extracting prominent features from incomplete or inaccurate records. In this study, we enhance the existing privacy risk assessment with a DL-based ER method, namely Multi-Context Attention (MCA), to comprehensively evaluate individuals' PII exposure across the different online platforms in the dark web and surface web. Evaluation against benchmark ER models indicates the efficacy of MCA. Using MCA on a random sample of data breach victims in the dark web, we are able to identify 4.3% of the victims on the surface web platforms and calculate their privacy risk scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Data by Principal Component Analysis Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter Integration of Fuzzy and Deep Learning in Three-Way Decisions Mining Heterogeneous Data for Formulation Design Restructuring of Hoeffding Trees for Trapezoidal Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1