基于cnn的机器人激光扫描管状t型接头焊缝凹槽特征提取

Øyvind W. Mjølhus, Andrej Cibicik, E. B. Njaastad, O. Egeland
{"title":"基于cnn的机器人激光扫描管状t型接头焊缝凹槽特征提取","authors":"Øyvind W. Mjølhus, Andrej Cibicik, E. B. Njaastad, O. Egeland","doi":"10.1109/IRC55401.2022.00063","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for feature point extraction from scanning data of large tubular T-joints (a subtype of a TKY joint). Extracting such feature points is a vital step for robot path generation in robotic welding. Therefore, fast and reliable feature point extraction is necessary for developing adaptive robotic welding solutions. The algorithm is based on a Convolutional Neural Network (CNN) for detecting feature points in a scanned weld groove, where the scans are done using a laser profile scanner. To facilitate fast and efficient training, we propose a methodology for generating synthetic training data in the computer graphics software Blender using realistic physical properties of objects. Further, an iterative feature point correction procedure is implemented to improve initial feature point results. The algorithm’s performance was validated using a real-world dataset acquired from a large tubular T-joint.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"32 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNN-based Feature Extraction for Robotic Laser Scanning of Weld Grooves in Tubular T-joints\",\"authors\":\"Øyvind W. Mjølhus, Andrej Cibicik, E. B. Njaastad, O. Egeland\",\"doi\":\"10.1109/IRC55401.2022.00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm for feature point extraction from scanning data of large tubular T-joints (a subtype of a TKY joint). Extracting such feature points is a vital step for robot path generation in robotic welding. Therefore, fast and reliable feature point extraction is necessary for developing adaptive robotic welding solutions. The algorithm is based on a Convolutional Neural Network (CNN) for detecting feature points in a scanned weld groove, where the scans are done using a laser profile scanner. To facilitate fast and efficient training, we propose a methodology for generating synthetic training data in the computer graphics software Blender using realistic physical properties of objects. Further, an iterative feature point correction procedure is implemented to improve initial feature point results. The algorithm’s performance was validated using a real-world dataset acquired from a large tubular T-joint.\",\"PeriodicalId\":282759,\"journal\":{\"name\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"32 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC55401.2022.00063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种从大型管状t型接头(TKY接头的一种)的扫描数据中提取特征点的算法。在机器人焊接中,这些特征点的提取是机器人路径生成的关键步骤。因此,快速可靠的特征点提取是开发自适应机器人焊接解决方案的必要条件。该算法基于卷积神经网络(CNN),用于检测扫描焊缝坡口中的特征点,其中扫描使用激光轮廓扫描仪完成。为了促进快速有效的训练,我们提出了一种在计算机图形软件Blender中使用对象的真实物理属性生成合成训练数据的方法。此外,实现了迭代特征点校正程序以改进初始特征点结果。该算法的性能通过从大型管状t型接头获取的真实数据集进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN-based Feature Extraction for Robotic Laser Scanning of Weld Grooves in Tubular T-joints
This paper presents an algorithm for feature point extraction from scanning data of large tubular T-joints (a subtype of a TKY joint). Extracting such feature points is a vital step for robot path generation in robotic welding. Therefore, fast and reliable feature point extraction is necessary for developing adaptive robotic welding solutions. The algorithm is based on a Convolutional Neural Network (CNN) for detecting feature points in a scanned weld groove, where the scans are done using a laser profile scanner. To facilitate fast and efficient training, we propose a methodology for generating synthetic training data in the computer graphics software Blender using realistic physical properties of objects. Further, an iterative feature point correction procedure is implemented to improve initial feature point results. The algorithm’s performance was validated using a real-world dataset acquired from a large tubular T-joint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Approach to 6D Object Pose Tracking in Fast Motion Scenarios Mechanical Exploration of the Design of Tactile Fingertips via Finite Element Analysis Generating Robot-Dependent Cost Maps for Off-Road Environments Using Locomotion Experiments and Earth Observation Data* Tracking Visual Landmarks of Opportunity as Rally Points for Unmanned Ground Vehicles Experimental Assessment of Feature-based Lidar Odometry and Mapping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1