{"title":"空间应用的太赫兹(THz)无线系统","authors":"S. Hwu, K. Desilva, Cindy T. Jih","doi":"10.1109/SAS.2013.6493580","DOIUrl":null,"url":null,"abstract":"NASA has been leading the Terahertz (THz) technology development for the sensors and instruments in astronomy in the past 20 years. THz technologies are expanding into much broader applications in recent years. Due to the vast available multiple gigahertz (GHz) broad bandwidths, THz radios offer the possibility for wireless transmission of high data rates. Multi-Gigabits per second (MGbps) broadband wireless access based on THz waves are closer to reality. The THz signal high atmosphere attenuation could significantly decrease the communication ranges and transmittable data rates for the ground systems. Contrary to the THz applications on the ground, the space applications in the atmosphere free environment do not suffer the atmosphere attenuation. The manufacturing technologies for the THz electronic components are advancing and maturing. There is great potential for the NASA future high data wireless applications in environments with difficult cabling and size/weight constraints. In this study, the THz wireless systems for potential space applications were investigated. The applicability of THz systems for space applications was analyzed. The link analysis indicates that MGbps data rates are achievable with compact sized high gain antennas.","PeriodicalId":309610,"journal":{"name":"2013 IEEE Sensors Applications Symposium Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Terahertz (THz) wireless systems for space applications\",\"authors\":\"S. Hwu, K. Desilva, Cindy T. Jih\",\"doi\":\"10.1109/SAS.2013.6493580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NASA has been leading the Terahertz (THz) technology development for the sensors and instruments in astronomy in the past 20 years. THz technologies are expanding into much broader applications in recent years. Due to the vast available multiple gigahertz (GHz) broad bandwidths, THz radios offer the possibility for wireless transmission of high data rates. Multi-Gigabits per second (MGbps) broadband wireless access based on THz waves are closer to reality. The THz signal high atmosphere attenuation could significantly decrease the communication ranges and transmittable data rates for the ground systems. Contrary to the THz applications on the ground, the space applications in the atmosphere free environment do not suffer the atmosphere attenuation. The manufacturing technologies for the THz electronic components are advancing and maturing. There is great potential for the NASA future high data wireless applications in environments with difficult cabling and size/weight constraints. In this study, the THz wireless systems for potential space applications were investigated. The applicability of THz systems for space applications was analyzed. The link analysis indicates that MGbps data rates are achievable with compact sized high gain antennas.\",\"PeriodicalId\":309610,\"journal\":{\"name\":\"2013 IEEE Sensors Applications Symposium Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Sensors Applications Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS.2013.6493580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Sensors Applications Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2013.6493580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Terahertz (THz) wireless systems for space applications
NASA has been leading the Terahertz (THz) technology development for the sensors and instruments in astronomy in the past 20 years. THz technologies are expanding into much broader applications in recent years. Due to the vast available multiple gigahertz (GHz) broad bandwidths, THz radios offer the possibility for wireless transmission of high data rates. Multi-Gigabits per second (MGbps) broadband wireless access based on THz waves are closer to reality. The THz signal high atmosphere attenuation could significantly decrease the communication ranges and transmittable data rates for the ground systems. Contrary to the THz applications on the ground, the space applications in the atmosphere free environment do not suffer the atmosphere attenuation. The manufacturing technologies for the THz electronic components are advancing and maturing. There is great potential for the NASA future high data wireless applications in environments with difficult cabling and size/weight constraints. In this study, the THz wireless systems for potential space applications were investigated. The applicability of THz systems for space applications was analyzed. The link analysis indicates that MGbps data rates are achievable with compact sized high gain antennas.