EM-Sense:非仪器,电气和机电物体的触摸识别

Gierad Laput, Chouchang Yang, R. Xiao, A. Sample, Chris Harrison
{"title":"EM-Sense:非仪器,电气和机电物体的触摸识别","authors":"Gierad Laput, Chouchang Yang, R. Xiao, A. Sample, Chris Harrison","doi":"10.1145/2807442.2807481","DOIUrl":null,"url":null,"abstract":"Most everyday electrical and electromechanical objects emit small amounts of electromagnetic (EM) noise during regular operation. When a user makes physical contact with such an object, this EM signal propagates through the user, owing to the conductivity of the human body. By modifying a small, low-cost, software-defined radio, we can detect and classify these signals in real-time, enabling robust on-touch object detection. Unlike prior work, our approach requires no instrumentation of objects or the environment; our sensor is self-contained and can be worn unobtrusively on the body. We call our technique EM-Sense and built a proof-of-concept smartwatch implementation. Our studies show that discrimination between dozens of objects is feasible, independent of wearer, time and local environment.","PeriodicalId":103668,"journal":{"name":"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"EM-Sense: Touch Recognition of Uninstrumented, Electrical and Electromechanical Objects\",\"authors\":\"Gierad Laput, Chouchang Yang, R. Xiao, A. Sample, Chris Harrison\",\"doi\":\"10.1145/2807442.2807481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most everyday electrical and electromechanical objects emit small amounts of electromagnetic (EM) noise during regular operation. When a user makes physical contact with such an object, this EM signal propagates through the user, owing to the conductivity of the human body. By modifying a small, low-cost, software-defined radio, we can detect and classify these signals in real-time, enabling robust on-touch object detection. Unlike prior work, our approach requires no instrumentation of objects or the environment; our sensor is self-contained and can be worn unobtrusively on the body. We call our technique EM-Sense and built a proof-of-concept smartwatch implementation. Our studies show that discrimination between dozens of objects is feasible, independent of wearer, time and local environment.\",\"PeriodicalId\":103668,\"journal\":{\"name\":\"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2807442.2807481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807442.2807481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

摘要

大多数日常电气和机电设备在正常运行时都会发出少量的电磁噪声。当用户与这样的物体进行物理接触时,由于人体的导电性,这种电磁信号在用户体内传播。通过修改一个小的,低成本的,软件定义的无线电,我们可以实时检测和分类这些信号,实现强大的触摸对象检测。与之前的工作不同,我们的方法不需要对象或环境的仪器;我们的传感器是独立的,可以不显眼地戴在身上。我们将这项技术称为EM-Sense,并构建了一个概念验证型智能手表实现。我们的研究表明,识别几十个物体是可行的,与佩戴者、时间和当地环境无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EM-Sense: Touch Recognition of Uninstrumented, Electrical and Electromechanical Objects
Most everyday electrical and electromechanical objects emit small amounts of electromagnetic (EM) noise during regular operation. When a user makes physical contact with such an object, this EM signal propagates through the user, owing to the conductivity of the human body. By modifying a small, low-cost, software-defined radio, we can detect and classify these signals in real-time, enabling robust on-touch object detection. Unlike prior work, our approach requires no instrumentation of objects or the environment; our sensor is self-contained and can be worn unobtrusively on the body. We call our technique EM-Sense and built a proof-of-concept smartwatch implementation. Our studies show that discrimination between dozens of objects is feasible, independent of wearer, time and local environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology Push-Push: A Drag-like Operation Overlapped with a Page Transition Operation on Touch Interfaces Gaze-Shifting: Direct-Indirect Input with Pen and Touch Modulated by Gaze LaserStacker: Fabricating 3D Objects by Laser Cutting and Welding Capture-Time Feedback for Recording Scripted Narration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1