野外面部表情识别及其在机器人中的应用

Hasan Han, O. Karadeniz, Elena Battini Sönmez, Tuǧba Dalyan, B. Sarıoǧlu
{"title":"野外面部表情识别及其在机器人中的应用","authors":"Hasan Han, O. Karadeniz, Elena Battini Sönmez, Tuǧba Dalyan, B. Sarıoǧlu","doi":"10.1109/UBMK52708.2021.9558909","DOIUrl":null,"url":null,"abstract":"One of the major problems with robot companions is their lack of credibility. Since emotions play a key role in human behaviour their implementation in virtual agents is a conditio sine-qua-non for realistic models. That is, correct classification of facial expressions in the wild is a necessary preprocessing step for implementing artificial empathy. The aim of this work is to implement a robust Facial Expression Recognition (FER) module into a robot. Considering the results of an empirical comparison among the most successful deep learning algorithms used for FER, this study fixes the state-of the-art performance of 75% on the FER2013 database with the ensemble method. With a single model, the best performance of 70.8% has been reached using the VGG16 architecture. Finally, the VGG16-based FER module has been been implemented into a robot and reached a performance of 70% when tested with wild expressive faces.","PeriodicalId":106516,"journal":{"name":"2021 6th International Conference on Computer Science and Engineering (UBMK)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Facial Expression Recognition in the Wild with Application in Robotics\",\"authors\":\"Hasan Han, O. Karadeniz, Elena Battini Sönmez, Tuǧba Dalyan, B. Sarıoǧlu\",\"doi\":\"10.1109/UBMK52708.2021.9558909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major problems with robot companions is their lack of credibility. Since emotions play a key role in human behaviour their implementation in virtual agents is a conditio sine-qua-non for realistic models. That is, correct classification of facial expressions in the wild is a necessary preprocessing step for implementing artificial empathy. The aim of this work is to implement a robust Facial Expression Recognition (FER) module into a robot. Considering the results of an empirical comparison among the most successful deep learning algorithms used for FER, this study fixes the state-of the-art performance of 75% on the FER2013 database with the ensemble method. With a single model, the best performance of 70.8% has been reached using the VGG16 architecture. Finally, the VGG16-based FER module has been been implemented into a robot and reached a performance of 70% when tested with wild expressive faces.\",\"PeriodicalId\":106516,\"journal\":{\"name\":\"2021 6th International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK52708.2021.9558909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK52708.2021.9558909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

机器人同伴的一个主要问题是它们缺乏可信度。由于情感在人类行为中起着关键作用,它们在虚拟代理中的实现是现实模型的必要条件。也就是说,对野外面部表情的正确分类是实现人工共情的必要预处理步骤。这项工作的目的是在机器人中实现一个鲁棒的面部表情识别(FER)模块。考虑到最成功的深度学习算法用于FER的经验比较结果,本研究使用集成方法在FER2013数据库上固定了75%的最先进性能。在单个模型中,使用VGG16架构可以达到70.8%的最佳性能。最后,基于vgg16的FER模块已实现到机器人中,并在与野生表情面部进行测试时达到70%的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facial Expression Recognition in the Wild with Application in Robotics
One of the major problems with robot companions is their lack of credibility. Since emotions play a key role in human behaviour their implementation in virtual agents is a conditio sine-qua-non for realistic models. That is, correct classification of facial expressions in the wild is a necessary preprocessing step for implementing artificial empathy. The aim of this work is to implement a robust Facial Expression Recognition (FER) module into a robot. Considering the results of an empirical comparison among the most successful deep learning algorithms used for FER, this study fixes the state-of the-art performance of 75% on the FER2013 database with the ensemble method. With a single model, the best performance of 70.8% has been reached using the VGG16 architecture. Finally, the VGG16-based FER module has been been implemented into a robot and reached a performance of 70% when tested with wild expressive faces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotion Analysis from Facial Expressions Using Convolutional Neural Networks Early Stage Fault Prediction via Inter-Project Rule Transfer Semantic Similarity Comparison of Word Representation Methods in the Field of Health Small Object Detection and Tracking from Aerial Imagery Anomaly Detection with Deep Long Short Term Memory Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1