基于按键的MLP神经网络用户识别系统

E. Popovici, Ovidiu G. Guta, Liviu A. Stancu, Stefan Arseni, O. Fratu
{"title":"基于按键的MLP神经网络用户识别系统","authors":"E. Popovici, Ovidiu G. Guta, Liviu A. Stancu, Stefan Arseni, O. Fratu","doi":"10.1109/TELSKS.2013.6704912","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a continuous authentication system based on keystroke dynamics (BIOMETRIC). We also propose two algorithms for extracting patterns and validating the user, both intended to be used in the same time to improve the overall performance of the validation process. The first one is based on a Multi Layer Perceptron (MLP) Neural Network and the second one relies on a trust algorithm that uses the Bhattacharyya coefficient.","PeriodicalId":144044,"journal":{"name":"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"MLP neural network for keystroke-based user identification system\",\"authors\":\"E. Popovici, Ovidiu G. Guta, Liviu A. Stancu, Stefan Arseni, O. Fratu\",\"doi\":\"10.1109/TELSKS.2013.6704912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a continuous authentication system based on keystroke dynamics (BIOMETRIC). We also propose two algorithms for extracting patterns and validating the user, both intended to be used in the same time to improve the overall performance of the validation process. The first one is based on a Multi Layer Perceptron (MLP) Neural Network and the second one relies on a trust algorithm that uses the Bhattacharyya coefficient.\",\"PeriodicalId\":144044,\"journal\":{\"name\":\"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELSKS.2013.6704912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSKS.2013.6704912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文介绍了一种基于击键动力学(BIOMETRIC)的连续认证系统。我们还提出了两种用于提取模式和验证用户的算法,这两种算法旨在同时使用,以提高验证过程的整体性能。第一个基于多层感知器(MLP)神经网络,第二个依赖于使用Bhattacharyya系数的信任算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MLP neural network for keystroke-based user identification system
In this paper we introduce a continuous authentication system based on keystroke dynamics (BIOMETRIC). We also propose two algorithms for extracting patterns and validating the user, both intended to be used in the same time to improve the overall performance of the validation process. The first one is based on a Multi Layer Perceptron (MLP) Neural Network and the second one relies on a trust algorithm that uses the Bhattacharyya coefficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical program committee A bidirectional moving field inductive power transfer system for electric vehicles Dynamic REM towards flexible spectrum management Artificial Neural Networks for ranging of passive UHF RFID tags Prediction and measurement of electromagnetic radiation at Krajina square in the city of Banja Luka
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1