基于运动与时动静态特征的监视雷达航迹递归贝叶斯分类

Lars W. Jochumsen, M. O. Pedersen, K. Hansen, S. H. Jensen, J. Ostergaard
{"title":"基于运动与时动静态特征的监视雷达航迹递归贝叶斯分类","authors":"Lars W. Jochumsen, M. O. Pedersen, K. Hansen, S. H. Jensen, J. Ostergaard","doi":"10.1109/RADAR.2014.7060321","DOIUrl":null,"url":null,"abstract":"In this paper, it is shown that kinematic and static features are very useful in on-line classification of surveillance radar tracks based on real radar data. A simple classifier called recursive Gaussian mixture model (RGMM) is constructed using a recursive naive Bayesian approach combined with a multivariate GMM. The kinematic features used in the RGMM classifier are speed and normal acceleration, the geographic features are road, sea, land and the sensor features are intensities. It is then shown that if the feature vector is augmented with information about the temporal dynamics of the kinematic parameters, a substantial improvement in target classification is achieved. The classifiers are tested with several target classes relevant for coastal surveillance and different data sources such as radar and GPS. The proposed algorithms are classifying with 86% accuracy with 10 target classes versus 78% for the RGMM classifier.","PeriodicalId":317910,"journal":{"name":"2014 International Radar Conference","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recursive Bayesian classification of surveillance radar tracks based on kinematic with temporal dynamics and static features\",\"authors\":\"Lars W. Jochumsen, M. O. Pedersen, K. Hansen, S. H. Jensen, J. Ostergaard\",\"doi\":\"10.1109/RADAR.2014.7060321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, it is shown that kinematic and static features are very useful in on-line classification of surveillance radar tracks based on real radar data. A simple classifier called recursive Gaussian mixture model (RGMM) is constructed using a recursive naive Bayesian approach combined with a multivariate GMM. The kinematic features used in the RGMM classifier are speed and normal acceleration, the geographic features are road, sea, land and the sensor features are intensities. It is then shown that if the feature vector is augmented with information about the temporal dynamics of the kinematic parameters, a substantial improvement in target classification is achieved. The classifiers are tested with several target classes relevant for coastal surveillance and different data sources such as radar and GPS. The proposed algorithms are classifying with 86% accuracy with 10 target classes versus 78% for the RGMM classifier.\",\"PeriodicalId\":317910,\"journal\":{\"name\":\"2014 International Radar Conference\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2014.7060321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2014.7060321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文的研究表明,运动和静态特征在基于真实雷达数据的监视雷达航迹在线分类中是非常有用的。将递归朴素贝叶斯方法与多元递归高斯混合模型相结合,构造了一个简单的分类器递归高斯混合模型。RGMM分类器中使用的运动学特征是速度和法向加速度,地理特征是道路、海洋、陆地,传感器特征是强度。结果表明,如果在特征向量中加入运动学参数的时间动态信息,则可以大大提高目标分类能力。分类器在与海岸监视和不同数据源(如雷达和GPS)相关的几个目标类别上进行了测试。提出的算法对10个目标类的分类准确率为86%,而RGMM分类器的准确率为78%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recursive Bayesian classification of surveillance radar tracks based on kinematic with temporal dynamics and static features
In this paper, it is shown that kinematic and static features are very useful in on-line classification of surveillance radar tracks based on real radar data. A simple classifier called recursive Gaussian mixture model (RGMM) is constructed using a recursive naive Bayesian approach combined with a multivariate GMM. The kinematic features used in the RGMM classifier are speed and normal acceleration, the geographic features are road, sea, land and the sensor features are intensities. It is then shown that if the feature vector is augmented with information about the temporal dynamics of the kinematic parameters, a substantial improvement in target classification is achieved. The classifiers are tested with several target classes relevant for coastal surveillance and different data sources such as radar and GPS. The proposed algorithms are classifying with 86% accuracy with 10 target classes versus 78% for the RGMM classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A real-time high resolution passive WiFi Doppler-radar and its applications Multi-sensor full-polarimetric SAR Automatic Target Recognition using pseudo-Zernike moments Evaluation of the attenuation in L-band due to the foliage in function of the elevation angle Cognitive kriging metamodels for forest characterization and target detection Development of a planetary georadar prototype with agile beam (AGILE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1