A. Zandi, James D. Allen, E. L. Schwartz, M. Boliek
{"title":"CREW:压缩与可逆嵌入小波","authors":"A. Zandi, James D. Allen, E. L. Schwartz, M. Boliek","doi":"10.1109/DCC.1995.515511","DOIUrl":null,"url":null,"abstract":"Compression with Reversible Embedded Wavelets (CREW) is a unified lossless and lossy continuous tone still image compression system. It is wavelet based using a \"reversible\" approximation of one of the best wavelet filters. Reversible wavelets are linear filters with non linear rounding which implement exact reconstruction systems with minimal precision integer arithmetic. Wavelet coefficients are encoded in a bit significance embedded order, allowing lossy compression by simply truncating the compressed data. For coding of coefficients, CREW uses a method similar to J. Shapiro's (1993) zero tree, and a completely novel method called Horizon. Horizon coding is a context based coding that takes advantage of the spatial and spectral information available in the wavelet domain. CREW provides state of the art lossless compression of medical images (greater than 8 bits deep), and lossy and lossless compression of 8 bit deep images with a single system. CREW has reasonable software and hardware implementations.","PeriodicalId":107017,"journal":{"name":"Proceedings DCC '95 Data Compression Conference","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"254","resultStr":"{\"title\":\"CREW: Compression with Reversible Embedded Wavelets\",\"authors\":\"A. Zandi, James D. Allen, E. L. Schwartz, M. Boliek\",\"doi\":\"10.1109/DCC.1995.515511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compression with Reversible Embedded Wavelets (CREW) is a unified lossless and lossy continuous tone still image compression system. It is wavelet based using a \\\"reversible\\\" approximation of one of the best wavelet filters. Reversible wavelets are linear filters with non linear rounding which implement exact reconstruction systems with minimal precision integer arithmetic. Wavelet coefficients are encoded in a bit significance embedded order, allowing lossy compression by simply truncating the compressed data. For coding of coefficients, CREW uses a method similar to J. Shapiro's (1993) zero tree, and a completely novel method called Horizon. Horizon coding is a context based coding that takes advantage of the spatial and spectral information available in the wavelet domain. CREW provides state of the art lossless compression of medical images (greater than 8 bits deep), and lossy and lossless compression of 8 bit deep images with a single system. CREW has reasonable software and hardware implementations.\",\"PeriodicalId\":107017,\"journal\":{\"name\":\"Proceedings DCC '95 Data Compression Conference\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"254\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC '95 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1995.515511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '95 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1995.515511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CREW: Compression with Reversible Embedded Wavelets
Compression with Reversible Embedded Wavelets (CREW) is a unified lossless and lossy continuous tone still image compression system. It is wavelet based using a "reversible" approximation of one of the best wavelet filters. Reversible wavelets are linear filters with non linear rounding which implement exact reconstruction systems with minimal precision integer arithmetic. Wavelet coefficients are encoded in a bit significance embedded order, allowing lossy compression by simply truncating the compressed data. For coding of coefficients, CREW uses a method similar to J. Shapiro's (1993) zero tree, and a completely novel method called Horizon. Horizon coding is a context based coding that takes advantage of the spatial and spectral information available in the wavelet domain. CREW provides state of the art lossless compression of medical images (greater than 8 bits deep), and lossy and lossless compression of 8 bit deep images with a single system. CREW has reasonable software and hardware implementations.