小波与主成分分析相结合的人脸识别

M. Mazloom, S. Kasaei
{"title":"小波与主成分分析相结合的人脸识别","authors":"M. Mazloom, S. Kasaei","doi":"10.1109/IEEEGCC.2006.5686205","DOIUrl":null,"url":null,"abstract":"This work presents a method to increase the face recognition accuracy using a combination of Wavelet, PCA, and Neural Networks. Preprocessing, feature extraction and classification rules are three crucial issues for face recognition. This paper presents a hybrid approach to employ these issues. For preprocessing and feature extraction steps, we apply a combination of wavelet transform and PCA. During the classification stage, the Neural Network (MLP) is explored to achieve a robust decision in presence of wide facial variations. The computational load of the proposed method is greatly reduced as comparing with the original PCA based method on the Yale and ORL face databases. Moreover, the accuracy of the proposed method is improved.","PeriodicalId":433452,"journal":{"name":"2006 IEEE GCC Conference (GCC)","volume":"63 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Combination of Wavelet and PCA for face recognition\",\"authors\":\"M. Mazloom, S. Kasaei\",\"doi\":\"10.1109/IEEEGCC.2006.5686205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a method to increase the face recognition accuracy using a combination of Wavelet, PCA, and Neural Networks. Preprocessing, feature extraction and classification rules are three crucial issues for face recognition. This paper presents a hybrid approach to employ these issues. For preprocessing and feature extraction steps, we apply a combination of wavelet transform and PCA. During the classification stage, the Neural Network (MLP) is explored to achieve a robust decision in presence of wide facial variations. The computational load of the proposed method is greatly reduced as comparing with the original PCA based method on the Yale and ORL face databases. Moreover, the accuracy of the proposed method is improved.\",\"PeriodicalId\":433452,\"journal\":{\"name\":\"2006 IEEE GCC Conference (GCC)\",\"volume\":\"63 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE GCC Conference (GCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEEGCC.2006.5686205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE GCC Conference (GCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEEGCC.2006.5686205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种结合小波、主成分分析和神经网络来提高人脸识别精度的方法。预处理、特征提取和分类规则是人脸识别的三个关键问题。本文提出了一种混合方法来解决这些问题。在预处理和特征提取步骤中,我们将小波变换和主成分分析相结合。在分类阶段,探索神经网络(MLP)在存在广泛面部变化的情况下实现鲁棒决策。与基于耶鲁和ORL人脸数据库的PCA方法相比,该方法的计算量大大减少。此外,该方法的精度得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combination of Wavelet and PCA for face recognition
This work presents a method to increase the face recognition accuracy using a combination of Wavelet, PCA, and Neural Networks. Preprocessing, feature extraction and classification rules are three crucial issues for face recognition. This paper presents a hybrid approach to employ these issues. For preprocessing and feature extraction steps, we apply a combination of wavelet transform and PCA. During the classification stage, the Neural Network (MLP) is explored to achieve a robust decision in presence of wide facial variations. The computational load of the proposed method is greatly reduced as comparing with the original PCA based method on the Yale and ORL face databases. Moreover, the accuracy of the proposed method is improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perturbation method based evaluation of power system voltage security Allocating generation to loads and line flows for transmission open access Z-transform PML algorithm for truncating metamaterial FDTD domains A personal search agent system Optimum design of high frequency transformer for compact and light weight switch mode power supplies (SMPS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1