木质纤维素废物有效生物转化为生物可降解产品,为更清洁的地球

N. P, K. I, D. B
{"title":"木质纤维素废物有效生物转化为生物可降解产品,为更清洁的地球","authors":"N. P, K. I, D. B","doi":"10.23880/oajmb-16000230","DOIUrl":null,"url":null,"abstract":"Earth is constantly subjected to dramatic changes due to uncontrolled human activities and this has led to climatic variations associated with global warming resulting in unparalleled greenhouse gas emissions. One of the major causes is solid waste accumulation by human activities ranging from agricultural to industrial activities. The relation between solid waste and climatic change had forced scientists to propose a solid waste management plan to reuse, recycle and create energy from solid waste preventing its accumulation and subsequent pollution. When we consider human activities which are environmentally hazardous; plastic waste accumulation, agricultural wastes disposal and fossil fuel burning holds prominent positions. Plastic wastes. The accumulation of plastic wastes and agricultural wastes pose serious problems of disposal. Plastic wastes are often incinerated or left to be dumped in landfills. Similarly, agricultural wastes are also burnt, releasing a lot of toxic gases into the atmosphere. A common solution to curb both the problems is to streamline the production of bioplastic using agricultural waste (mostly lignocellulose) as a substrate. The third major environmental threat is the increased motor vehicle emission leading to air pollution associated with health threat. The extent of risk ranges from carcinogenic and noncarcinogenic health effects. Carbon dioxide emission by the increasing use of fossil fuels by ever increasing world population not only depletes the resource but also will result in anthropogenic climate change. Therefore, utilization of lignocellulosic waste material as raw material for monomers for bioplastic as well as for bioethanol production can be considered as a productive approach to address all the three problems mentioned above. In addition utilization of fermentation residue after bio products extraction can be used as a soil enriching agent. The intention is converting lignocellulosic waste to zero waste.","PeriodicalId":257510,"journal":{"name":"Open Access Journal of Microbiology & Biotechnology","volume":"332 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Bioconversion of Lignocellulosic Waste to Biodegradable Products for a Cleaner Earth\",\"authors\":\"N. P, K. I, D. B\",\"doi\":\"10.23880/oajmb-16000230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earth is constantly subjected to dramatic changes due to uncontrolled human activities and this has led to climatic variations associated with global warming resulting in unparalleled greenhouse gas emissions. One of the major causes is solid waste accumulation by human activities ranging from agricultural to industrial activities. The relation between solid waste and climatic change had forced scientists to propose a solid waste management plan to reuse, recycle and create energy from solid waste preventing its accumulation and subsequent pollution. When we consider human activities which are environmentally hazardous; plastic waste accumulation, agricultural wastes disposal and fossil fuel burning holds prominent positions. Plastic wastes. The accumulation of plastic wastes and agricultural wastes pose serious problems of disposal. Plastic wastes are often incinerated or left to be dumped in landfills. Similarly, agricultural wastes are also burnt, releasing a lot of toxic gases into the atmosphere. A common solution to curb both the problems is to streamline the production of bioplastic using agricultural waste (mostly lignocellulose) as a substrate. The third major environmental threat is the increased motor vehicle emission leading to air pollution associated with health threat. The extent of risk ranges from carcinogenic and noncarcinogenic health effects. Carbon dioxide emission by the increasing use of fossil fuels by ever increasing world population not only depletes the resource but also will result in anthropogenic climate change. Therefore, utilization of lignocellulosic waste material as raw material for monomers for bioplastic as well as for bioethanol production can be considered as a productive approach to address all the three problems mentioned above. In addition utilization of fermentation residue after bio products extraction can be used as a soil enriching agent. The intention is converting lignocellulosic waste to zero waste.\",\"PeriodicalId\":257510,\"journal\":{\"name\":\"Open Access Journal of Microbiology & Biotechnology\",\"volume\":\"332 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Access Journal of Microbiology & Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23880/oajmb-16000230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Access Journal of Microbiology & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23880/oajmb-16000230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于不受控制的人类活动,地球不断发生巨大变化,这导致了与全球变暖相关的气候变化,导致了前所未有的温室气体排放。其中一个主要原因是人类活动(从农业到工业活动)所积累的固体废物。固体废物与气候变化之间的关系迫使科学家们提出了一项固体废物管理计划,以再利用、回收和利用固体废物创造能源,防止其积累和随后的污染。当我们考虑对环境有害的人类活动时;塑料废物堆积、农业废物处理和化石燃料燃烧占据突出地位。塑料废弃物。塑料废物和农业废物的堆积造成了严重的处置问题。塑料垃圾通常被焚烧或丢弃在垃圾填埋场。同样,农业废弃物也被焚烧,向大气中释放了大量有毒气体。遏制这两个问题的一个常见解决方案是利用农业废物(主要是木质纤维素)作为底物来简化生物塑料的生产。第三个主要的环境威胁是机动车排放增加导致空气污染,对健康构成威胁。风险的程度从致癌和非致癌的健康影响不等。随着世界人口的不断增加,化石燃料的使用越来越多,二氧化碳的排放不仅耗尽了资源,而且会导致人为的气候变化。因此,利用木质纤维素废料作为生物塑料单体和生物乙醇生产的原料,可以被认为是解决上述所有三个问题的有效方法。此外,生物制品提取后的发酵残渣可作为土壤增肥剂加以利用。其目的是将木质纤维素废物转化为零废物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective Bioconversion of Lignocellulosic Waste to Biodegradable Products for a Cleaner Earth
Earth is constantly subjected to dramatic changes due to uncontrolled human activities and this has led to climatic variations associated with global warming resulting in unparalleled greenhouse gas emissions. One of the major causes is solid waste accumulation by human activities ranging from agricultural to industrial activities. The relation between solid waste and climatic change had forced scientists to propose a solid waste management plan to reuse, recycle and create energy from solid waste preventing its accumulation and subsequent pollution. When we consider human activities which are environmentally hazardous; plastic waste accumulation, agricultural wastes disposal and fossil fuel burning holds prominent positions. Plastic wastes. The accumulation of plastic wastes and agricultural wastes pose serious problems of disposal. Plastic wastes are often incinerated or left to be dumped in landfills. Similarly, agricultural wastes are also burnt, releasing a lot of toxic gases into the atmosphere. A common solution to curb both the problems is to streamline the production of bioplastic using agricultural waste (mostly lignocellulose) as a substrate. The third major environmental threat is the increased motor vehicle emission leading to air pollution associated with health threat. The extent of risk ranges from carcinogenic and noncarcinogenic health effects. Carbon dioxide emission by the increasing use of fossil fuels by ever increasing world population not only depletes the resource but also will result in anthropogenic climate change. Therefore, utilization of lignocellulosic waste material as raw material for monomers for bioplastic as well as for bioethanol production can be considered as a productive approach to address all the three problems mentioned above. In addition utilization of fermentation residue after bio products extraction can be used as a soil enriching agent. The intention is converting lignocellulosic waste to zero waste.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Versatility and Potential of Microbial Cellulose: Applications, Producers, and Sustainable Production Methods Bioremediation of Some Organic Pollutants in the Aquatic Environment; the Egyptian and the Global Experiences A Review of Nanofiber Coating Technology for Future Food Packaging Anthropogenic Changes in Land Use Impact the Emergence and Transmission of Infectious Diseases Overview of Urinary Tract Infection Caused by Bacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1